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Abstract:

In this article, MahgoubAdomian Decomposition method is developed to obtain an approximate solution of
the nonlinear system of Fractional Differential Equations. This method combines Mahgoub transform and
Adomian decomposition method. Here, the nonlinear terms have been handled with the help of Adomian
polynomials. The fractional derivatives are described in the Caputo sense. Some examples are given to
demonstrate that our newly method is very efficient and accurate.
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1. INTRODUCTION

Fractional differential equations (FDEs) are generalization of integer order differential equations to arbitrary
non-integer orders. Nowadays, FDEs have attracted many scientists and engineers because they have been
applied in various fields such as mechanics, signal processing, image processing, bioengineering, control
engineering, viscoelasticity and polymer networks [1]. Many mathematicians have begun to show much more
attention in finding the numerical solution of linear and nonlinear Fractional Differential Equations. Some of the
methods are Homotopy Analysis Method [2], Differential Transform Method [3], and Adomian Decomposition
Method [4].Several new integral transform methods have been proposed by many researchers to find the
analytical solution of linear FDEs. Some of them are Sumudu [5], Elzaki [6], Laplace [7], Mahgoub [8] and
Natural [9]. For solving nonlinear system of FDEs, the Adomian decomposition method was combined, with
Sumudu transform method [10], with Elzaki transform method [11], with Laplace transform method [12], with
Mahgoub transform method [13] and with Natural transform method [14].

In this paper, the Mahgoub Adomian Decomposition method (MADM) has been developed for finding the
approximate solution of nonlinear system of FDEs with Caputo derivatives. This paper is organized as follows:
Section 2 consists of basic definitions of fractional calculus and Mahgoub transform of fractional derivatives.
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Section 3 constructs the MADM for finding the approximate solutions for nonlinear system of fractional
differential equations. Section 4 gives some examples of FDEs to show the efficiency of this method.

2. PRELIMINARIES AND NOTATIONS
In this section, the fundamental definitions of fractional calculus, Mahgoub transform and Mahgoub transform
of fractional derivatives are given which are used in this paper.

Definition 2.1: A real function f(t),t > 0 is said to be in the space Cy» ueR if there exists a real number p > u
such that f(t) = tPf; (t) where f; (£)eC[0, ) and it is said to be in the space C* if and only if f ™eC,, meN.

Definition 2.2: The Riemann-Liouville fractional integral operator of order @ = 0, of a function feC,,u = —1,
is defined as

_ 1 et -1
Jf@) = 15 Jy (& =0 f()dx,a > 0,6 >0,
I°f@) = £ 2.1)
Definition 2.3: The fractional derivative of f (¢) in the Caputo sense is defined as
cn a _ 1 to, a1
D “f(t) = s Jy (€ = )" M (), 22)

form—1 <a <m,meN,t > 0 and feC™;

Definition 2.4: Mahgoub transform is defined on the set of continuous functions and exponential order. We
consider functions in the set A defined by

11 .
4= {f(t): (O] < PeSiif t € (—1) x[0,0), | = 1.2, €,> o}

where€,, €, may be finite or infinite and the constant P must be finite.

Let f € A, then the Mahgoub transform is defined as

MIFOI=H@ =u | f(De dt, t 20, €< u <€, (2.3)
Mahgoub transform of simple functions are given below:

M[1]=1

@Mt =

@M[t?] = =

nl I'n+1)

()Ml = o = =

The Mahgoub Transform for derivatives are:
(ML )] = uH () - uf (0)
@) MF©®O] =u*H@W) —u*£(0) — uf'(0)
@) M[fr®)] = u"H@w) — ZRzgu™*£*(0)
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Theorem 2.5:
Let f € A and the Mahgoub transform M[f ()] = H(w) then,
() MIEFO) =~ HW +2HW = (—=+3) HW
(i) MEfO)] = % Hw) - 2L Ha) + ZH@W) = (< + i)z H(w)

-k
n 1 d"

i) Menf©] = (-2 +2) H@ = S (-1 ke S Hw)

whereal = na}"{,a% = 1,a* = n!

Theorem 2.6: [13]

Let m e Nand @ > 0 be such that m — 1 < @ < m and H(u) be the Mahgoub transform of the function f(t),
then the Mahgoub transform of Caputo fractional derivative of f(t) of order « is given by

M[EDEF(D)] = u*H(w) — Xt us=*£09(0), 2.4)

3. CONSTRUCTION OF MAHGOUB ADOMIAN DECOMPOSITION METHOD FOR FDEs
Considering the general nonlinear system of fractional differential equations of the form

‘D “x(t) + Rx(t) + Fx(t) = g(t)
D Py(t) + Ry(t) + Fy(t) = h(t)where0 < a,B < 1 (3.1)

subject to the initial conditions x(0) = g(t) and y(0) = h(t). (3.2)
where °D “x(t), °D Py(t) are the Caputo fractional derivatives of the functions x(t), y(t) respectively. R is

the linear differential operator, F is the general nonlinear differential operator and g(t), h(t) are the source
terms.Applying the Mahgoub Transform and using Theorem 2.6 in (3.1) we get,

m-—1

M(x(©) = Z Wk (0) + = M(g(8)) — - MIR¥(E) + Fx(0)]
M(y(®) = 52 wf ™y (0) + 5 M(AD) — pMIRY(®) + Fy(0)] (3.3)

Using initial conditions then (3.3) becomes

M(x(0) = g(t) + = M(g (D)) — = M[Rx(t) + Fx(t)]

M(y(®) = h(®) + = M(h(®) — 5 MIRY () + Fy(t)] (3.4)
Applying the inverse Mahgoub transform in (3.4) we obtain

x(t) = G(t) — M~ [_ M[Rx(t) + Fx(t)]],

y(©) = H® - M [SMIRY© +Fyo]]| (35)

Noting that G(t) and H (t) are arising from the nonhomogeneous term and given initial conditions.
Now we assume an infinite series solutions form

x(t) = oo X (D), y(®) = X0 Ya(0) (3:6)
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Using (3.6) rewriting (3.5) as follows:
o xn () = G(£) — M1 [ﬁ MIR X502, (t) + F Xiig An]]

im0 () = HE) = M7 [ MIR S0 7, (®) + F Zico B, 67

where, 4, and B, are Adomian polynomials representing the nonlinear terms Fx(t) and Fy(t), respectively.For
the nonlinear functions the first few Adomian polynomials are given by

Ay = F(xo), By =F(y,)
A= F(l)(xo)xp B, = F(l)(YO)Jﬁ
Ay = FO (xg)x, + - F® (x0)x, 2 B, = FO(yo)y, + - FO (y)y,

By comparing both sides of (3.7) we get

X% (8) = G(®), yo (&) = H(®),
5 (© = -0 | MR O+ anl|. a0 = - ey + 5|

5® =47 | iR @+ 4|, a0 = - iy, © + B

Continuing in this manner to get the general recursive relation,

Xpia () = =M1 [uiaM[Rxn(t) + An]],n >1
Vo1 () = =M1 [uiBM[Ryn(t) + Bn]] n>1.

4. ILLUSTRATIVE EXAMPLES
In this section, we present the illustrative examples of the system of fractional differential equations by
implementing the proposed method in this article. The results for these examples demonstrate that the proposed
methods are accurate, effective and convenient.
Example 4.1Consider the system of nonlinear fractional differential equations of the form
1
D%x(t) = Ex(t)
DEy(t) = y(t) + x%(¢), 0<a,f<1 4.1)

Subject to the initial conditions, x(0) = 1; y(0) =0 4.2)
t
The exact solutions for the (4.1) are x(t) = ez and y(t) = tef fora =g = 1.

Applying the Mahgoub transform on both sides in (4.1), we get
a =1
M(D%x(t)) = ~M(x(1))

M (DPy(®) = M(y(®)) + MG (1)) 4.3)
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Applying Theorem 2.6 and using the initial conditions (4.2) in (4.3) and we get
M(x(D) = 1+ 5= M(x(t)

M(y(®) = 5 M(y(®) + M2 (6) (4.4)
In the view of (3.7), we have
M (Z xn(t)> -1+ zia M (Z X (t))
M(Zico () = 5 M(y(©) + 5 M (Tiico An) 4.5)

where x2(t) = X0_0A,.
Thus, Ay = X2,
Ay = 2x9x4,
A, = 2xx, + X7,
Ag = 2xpx5 + 2x1%5,
Ay = 2x0x, + 22, X3 + X,

We know that x(0) = x, = 1 andy(0) = y, = 0. Taking the inverse Mahgoub transform and using the above
recursive relation, the first few terms of the Mahgoub Adomian Decomposition series are derived as follows:

1 ¢
1T+ D)
o

NETE+ 1D

1 tZa
X = ——————

4TQa+1)

ta+B tZB

Y2

“T@iB+D) TEETD

1 t3a
% T 8TBa + 1)

tSB ta+2B F(Za + 1) t2a+B t2a+B
= + +
Fr@G+1) T(a+28+1) 4r*(a+1)TRa+p+1) 2IRa+p+1)

V3

and so on.

Finally, the approximate solutions are given by

(t)_“_l t® +1 2« +1 3@ N 1 e N 1 5« N
A T T+ 1) 4aTQ2a+1)  8TBa+1)  16T(da+1)  32IF(Ga+1)
th ta+h t28 t3 te+2B I'Qa+1) t2ath
y(t) = + + + + >
FB+1) T@+p+1) T@B+1) TBE+1) T(@+28+1) 4r%(a+1)IQa+p+1)
t2a+/?

R TIEA

when @ = § = 1, we get the approximate solution of exact solutions of (4.1).
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Table 1 shows the exact solution and the approximate solution obtained by our method corresponding to distinct
values of t. The Approximate solution is very much close to the exact solution. Fig. 1 shows the approximate
solution ofEqn. (4.1) obtained for values of (a) when « = # = 1 and (b) when a = 0.7, § = 0.6.

Tablel: Numerical Solution of (4.1)

a==1 a=07,8=0.6

¢ x(0) I%0) MADM

Exact MADM Exact MADM x(t) y(t)

0.1 1.051271 | 1.051271 | 0.110517 | 0.110517 | 1.118280 | 0.405462
0.2 | 1.105171 | 1.105171 | 0.244281 | 0.244277 | 1.201599 | 0.759576
0.3 | 1.161834 | 1.161834 | 0.405000 | 0.404932 | 1.279237 | 1.157226
0.4 | 1.221403 | 1.221402 | 0.596730 | 0.596620 | 1.354986 | 1.611382
0.5 | 1.284025 | 1.284025 | 0.824361 | 0.824011 | 1.430414 | 2.13028
0.6 | 1.349859 | 1.349857 | 1.093271 | 1.092367 | 1.506375 | 2.721058
0.7 | 1.419068 | 1.419064 | 1.409627 | 1.407589 | 1.583415 | 3.390614
0.8 | 1.491825 | 1.491818 | 1.780433 | 1.776284 | 1.661916 | 4.145901
0.9 | 1.568312 | 1.568299 | 2.213643 | 2.205830 | 1.742170 | 4.994049
1.0 | 1.648721 | 1.648697 | 2.718282 | 2.704438 | 1.824415 | 5.942419

azﬁ:] — (0 ) _
— Y0 i U-ZO--"-[}:O.O —x(f)

(a) (b)
Figure 1: The Plots of system (4.1) (a) when ¢ = 8 =1 and (b) whena = 0.7, f = 0.6.

Example 4.2
Consider the system of nonlinear fractional differential equations of the form

D%x(t) = 2y%(),

DEy(t) = tx,
DYz(t) = y(t)z(¢), 0<apy<l1 (4.6)
subject to the initial conditions x(0) = 0;y(0) = 1; z(0) = 1. 4.7)

Applying the Mahgoub transform on both sides in (4.6), we get

M(D%x(t)) = 2M(y2(t)),
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M (DPy(®) = M(tx).

M(D¥z(t)) = M(y(£)z(t)) 4.8)

Using the above theorem and the initial conditions (4.7) in (4.8) we get
2 2
M(x(t)) = u—aM(y ®)
MO®) = 1 ——L M(x®) + — M(x(©)
Y uf du ub+1

1
M(z() = 1+ MG ©2()
In the view of (3.7), we have

(0)-2(5)

n=0

1 d
ub du

M(Zizo¥n () = 1 = 5= M (Tiicg %0 () + 5 M=o %0 (6))

M50, (£)) = 1+ = M (T30 By)
wherey?(t) = Y- A, and y(t)z(t) = X%, B,,.
Thus, Ay = o2, By =y02,
Ay = 2yyy1, B, = yoz1 + y12,
Ay =20V, + y1% B, = yoz; + y12, + ¥,2y
As = 2y0Y3 + 21V, B3 = YoZ3 + Y12, + V329 + V,25.
We know that x(0) = x, = 0,y(0) = y, = 1 andz(0) = z, = 1. Taking the inverse Mahgoub transforms and

using the above recursive relation, the first few terms of the Mahgoub Adomian Decomposition series are
derived as follows:

Xy = 2 =0 7 =5
17 rea+1) = LT T+
2atatB+1 2ta+pf+1 t2v
Xy = 0 ) = Zy =
I(a+p+2) T'(a+p+2) r2y+1)
8at2a+ﬁ+1 8t2a+ﬁ+1 t3v 2ata+ﬁ+y+1 2ta+ﬁ+y+1

=0

BT a+B+2) Tatp+2) 2y T@r+D) T@+B+r+2) T@rp+r+2)

Finally, the approximate solutions are given by

2t 8a,t2a+[3+1 8t2a+/3+1
t) = + + + o
O = e Tea s 5+ (Ta v 51 2)
(t) P 2qtatB+1 N 2ta+B+1 8a(2a, +B + 1)t2a+2[?+2 8(2a +B + 1)t2a+2/?+2

Y = " T a+p+2) "T@+p +2) I'a+ 2B +3) I'a + 2B +3)

Sart2a+2B+2

Yraar 213
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t2Y t3Y 2ata+ﬁ+y+1 2ta+[3+y+1

t
O = e T D Ty s D T Tay+ D Tatf+r+D) T@rgiria

Table 2shows the approximate solution obtained by our method corresponding to distinct values of ¢. Fig. 2
shows the approximate solution of the (4.6) obtained for values of (a) when a = f =y = 1 and (b) when
a=05p=04 y=0.3.

Table 2: Numerical Solution of Eqn. (4.6)

a=f=y=1 a=0.5£=047y=0.3

x(t) y(© z(t) x(t) y(@®) z(t)
0.1 | 0.200068 | 1.000668 | 1.105189 | 0.733499 | 1.021424 | 2.039882
0.2 | 0.401110 | 1.005363 | 1.221699 | 1.122638 | 1.085711 2.550349
0.3 | 0.605727 | 1.018233 | 1.351439 | 1.554260 | 1.203457 3.043500
0.4 | 0.818452 | 1.043674 | 1.497070 | 2.093702 | 1.394863 3.561862
0.5 | 1.045926 | 1.086497 | 1.662153 | 2.784124 | 1.692368 | 4.125691
0.6 | 1.297094 | 1.152138 | 1.851294 | 3.661798 | 2.145317 | 4.748429
0.7 | 1.583422 | 1.246948 | 2.070302 | 4.760328 | 2.825786 | 5.440594
0.8 | 1.919143 | 1.378627 | 2.326347 | 6.112360 | 3.835380 | 6.211210
0.9 | 2321531 | 1.556883 | 2.628141 | 7.750433 | 5.312895 7.068456

1 2.811217 | 1.794415 | 2.986111 | 9.707481 | 7.442787 8.019998

> a=f=y=1 1o a=05f=04y=03

z(t)
x(t)

y(t)

(@) (b)

Figure 2: The Plots of the system (4.6), (a) whena = =y =1 & (b) whena = 0.5; 8 =0.4; y=0.3.
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5. CONCLUSION

In this paper, the Mahgoub transform method combined with the Adomian decomposition method is
successfully applied to solve the system of nonlinear fractional differential equations. Thus, the results show that
this method is a powerful mathematical tool for solving the systems of nonlinear fractional differential
equations.
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