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1. INTRODUCTION 

 

The celebrated Laplace transform was introduced by the French mathematician and physicist Pierre Simon 

Laplace (1749–1827). This classical integral transform together with another celebrated transform the Fourier 

transform (due to Joseph Fourier (1768–1830))  forms the foundation stone of  Operational Calculus, a branch 
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of mathematics which has very powerful applications not only in applied mathematics but also in other branches 

of science like physics, electrical and mechanical engineering, astronomy, heat transfer, etc.  The integral 

transforms play a pivotal role in finding the solutions of  the initial value problems and the initial-boundary 

value problems which are frequently encountered in engineering  sciences. Ever since the British electrical 

engineer Oliver Heaviside (1850 –1925) first used the Laplace transform to solve ordinary differential equations 

encountered by him in his study of electrical circuits, the subject of integral transforms caught sight of 

mathematicians and researchers and continues to be a hot field of mathematical research even today. The utility 

of the operational calculus methods  which solely rest upon the foundation pillars of integral transforms needs 

no introduction given the undisputed fact that these methods have found vast applications in the fields of 

ordinary and partial differential equations, integral equations, calculus of finite differences, problems in 

probability and statistics, the fractional integrals and fractional derivatives.  It is well known that the Laplace 

transform is a special case of the celebrated Fourier transform in the sense that it can be derived from the latter 

for a special class of exponentially decaying functions which are restricted in their definition to the positive part 

of the real axis.  The Laplace transform of many functions including the elementary functions and higher 

transcendental functions have been calculated and tabulated in a number of authoritative  standard works of 

mathematics, a few of them are [1 – 5]. The theory of the classical Laplace transform can be found in numerous 

works. We only mention three here, just only for the sake of reference [6,7,8]. The books mentioned in [7,8] are 

very recent contributions to existing  vast literature on the subject. Many extensions of the classical Laplace 
transform have also appeared in the literature. One very recent extension is the study of Kim and Kim [9], called 

the degenerate Laplace transform. Their study was extended by this author in a series of very recent papers [10-

13].  We may also mention that the  classical Laplace transform  in terms of real symmetric positive definite 

matrices and complex Hermitian positive definite matrices can be found in the work of Mathai [14] and in some 

references mentioned therein.  This book of Mathai also contains Laplace type integrals for many 

hypergeometric functions of matrix arguments with real positive definite matrices and Hermitian positive 

definite matrices as arguments. The author’s doctoral dissertation [15] also contains Laplace type integrals for 

many multiple hypergeometric functions of matrix arguments which are proved by using the Mathai’s matrix 

transform technique as discussed by Mathai in [14]. In developing these results, the results for the Laplace 

transforms of the hypergeometric functions of one and  more  scalar variables have played a crucial role. Thus, 

in short, we emphasize here that the utility of the classical Laplace transform in mathematics remains much 
more even today after about two centuries when they were first employed as effective tools for solving problems 

arising in applied mathematics, physics and engineering (see, [7], p.1). This underlines the need of continuous 

research in this field and enhancement of our existing knowledge about this celebrated integral transform.  

 

In this paper we proclaim a new generalization of the classical Laplace Transform which we call the Upadhyaya 

Integral Transform or the Upadhyaya Transform (UT) for brevity.  This generalization is a powerful and 

versatile generalization and unification of almost all the variants of the classical Laplace transform that are 

extant in the current mathematical research literature. We mention that the  Upadhyaya transform, which we 

introduce in this paper includes the classical Laplace transform, the Laplace – Carson transform,  the Sumudu 

transform and  most of the very recently introduced variants of the classical Laplace transform, namely,  the 

Elzaki transform, the Kashuri and Fundo transform, the Mahgoub transform,  the ZZ – transform, the Sadik 

transform, the Kamal transform, the Natural transform, the Mohand transform, the Aboodh transform, the 
Ramadan Group transform, the Shehu transform, the Sawi transform, the Tarig transform and the Yang 

transform. The scheme of the paper is as follows: in the first section of the paper we give the definition of the 

classical Laplace transform as our preliminary definition. In the second section of the paper we state our 

definition of the Upadhyaya transform. In the third section of the paper we provide the mathematical basis for 

the Upadhyaya transform and thus give the complex inversion formula for the Upadhyaya transform. In the 

fourth section we show how the different variants of the classical Laplace transforms as mentioned above are 

special cases of the Upadhyaya transform.  In the fifth section we develop the theory of the Upadhyaya 

transform parallel to the existing theory of the Laplace transform and also calculate the Upadhyaya transforms 

of some frequently used elementary functions. The sixth section is devoted to the n − dimensional 

generalization of the Upadhyaya transform and we point out some special cases of this generalization there, 

which currently exist in the literature. The seventh section provides the degenerate extension, while the eighth 

section provides the modified degenerate extension of the Upadhyaya transform. The matrix generalization of 

the Upadhyaya transform to the cases of real symmetric positive definite matrix arguments and the Hermitian 

positive definite matrix arguments are discussed respectively in the ninth and tenth sections of the paper.    

 

1.1 Preliminary Definitions 

Definition 1.1: Functions of Exponential Order: (see, for example, [7, p. 150])  A function ( )F t  is said to 

be of exponential order ( 0)a > on 0 t≤ < ∞  if there exists a positive constant K  such that for all t T>    
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 ( ) .atF t Ke≤  (1.1) 

Definition 1.2: The Laplace transform: (see, for example, [6, (1), p.1]). Let ( )F t  be a real valued function 

defined on ( ),−∞ ∞  such that ( ) 0 0.F t t= ∀ <  The Laplace transform of ( )F t , represented by 

( ){ }F tL , is defined by  

 ( ){ } ( ) ( )
0

; st
F t s f s e F t dt

∞
−= = ∫L  (1.2) 

where, the parameter s is a real or complex number and L  denotes the Laplace transform operator. Originally 

Laplace used this transform around 1780’s while working in probability theory [26] (see also, [27] and [28]). 

 

2. THE UPADHYAYA INTEGRAL TRANSFORM (or, THE UPADHYAYA TRANSFORM) 
 

For the sake of most general situations, we first define three complex parameters 
21 3

, ,λ λ λ  as below: 
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where, 
im  and 

ir  are nonnegative integers ( )1,2 ,6,i = …  and , , , , ,i i i i i ia b c d k l  are complex constants.  

Depending upon the situation at hand, we can also choose the parameters 21 3, ,λ λ λ  and the constants 

, , , , ,
i i i i i i

a b c d k l  to be real numbers also. The above choice of the parameters ensures the broadest form of 

generalization of the classical Laplace transform so that it encompasses almost all the existing variants of the 

Laplace transform that are currently in vogue in the mathematical research literature or may appear in the future.    

 

Definition 2.1: The Upadhyaya Integral Transform: Suppose the real valued function ( )F t  belongs to the 

set of functions defined by  

 ( ) ( ) ( ) [ ){ }1 2: ,  and /or 0, 1 0, , 1,2, . if j

t
j

jA F t M F t Me t
ηη η= ∃ > < ∈ − × ∞ =  (2.2) 

where, the constant M  is finite while 
1

η  and  
2

η   may not exist simultaneously. We define the function 

( )F t  such that ( ) 0F t =  for 0t < . The Upadhyaya transform (UT)  of the function ( )F t  is defined as 

 ( ){ } ( ) ( )2

1 1 12 33
0

2 3; , , , ,
t

eF t dtt F
λλ λλ λ λ λ λ λ

∞
−= = ∫uU  (2.3) 

provided this integral converges and the parameters 
21 3, ,λ λ λ  are given by (2.1). Here, we call  U  the 

Upadhyaya Transform Operator.  

 

3. THEORETICAL BASIS OF THE UPADHYAYA TRANSFORM 
 

It is well known that the celebrated Fourier integral formula simultaneously provided  not only the definitions of 

the Laplace transform as well as the inverse Laplace transform but also granted a method to evaluate the inverse 

Laplace transform of a function by means of evaluating a complex contour integral by the use of the Cauchy’s 

residue theorem and by suitably deforming the contour of integration in the complex plane. The Upadhyaya 

transform being a generalized form of the Laplace transform, therefore, we venture now to provide a 

mathematical basis for the Upadhyaya transform proclaimed above by us. 

                                  The Fourier integral formula for a function ( )1f x  defined on x−∞ < < ∞  is given by 

(see [7, (3.2.1), p. 144]) 

 ( ) ( )1 1

1
.

2

ikx iktf x e dk e f t dt
π

∞ ∞
−

−∞ −∞
= ∫ ∫  (3.1) 
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If we choose in the above equation ( )1 0f x =  in 0x−∞ < <  and put ( ) ( ) ( )1 3

cx
f x e F x H xλ−= , where, 

c  is a positive fixed number, 
3

λ  given by (2.1) and ( )H x  is the Heaviside  unit step function defined by (see, 

[7], (2.3.8), p. 22 and (2.3.9), p.23) 

 ( )
1, 0

0, 0x

x
H x

<

>
= 


 (3.2) 

and  in the general form by  

 ( )
1,

0,

x a

x a
H x a

>
− =

<



 (3.3) 

for a fixed real number a .  Now the  Fourier integral formula (3.1) yields, 

 ( ) ( ) ( ) ( )3 3

1

2

cx ikx ikt cte F x H x e dk e e F t H t dt
π

λ λ
∞ ∞

− − −

−∞ −∞
= ∫ ∫  (3.4) 

Applying  the definition of ( )H x  from (3.2) in (3.4) gives 

 ( ) ( ) ( ) ( )3 3
0

1

2

c ik x c ik t
F x e dk e F t dtλ λ

π

∞ ∞+ − +

−∞
= ∫ ∫  (3.5) 

We substitute 
2c ik λ+ =  (so that, 

2idk dλ= , with 1i = − ) then (3.5) renders  

 ( ) ( )2 22
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x t
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d
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λ λλ
λ λ

π

+ ∞ ∞
−

− ∞
= ∫ ∫  (3.6) 

Or, for the parameter 
1

λ  defined by (2.1), (3.6) can be rewritten as 

 ( ) ( )2 2

13 3
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1
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c i
x t

c i
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i
tλ λλ

π λ
λ λ λ
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− ∞

 =
  ∫ ∫  

 Noting that the expression within the square brackets of the last equation is the Upadhyaya transform 

( ){ } ( )2 3 2 31 1; , , , ,F t λ λ λ λ λ λ= uU  of the function ( )F t  ((2.3) above), we at once get the following 

complex inversion formula for the Upadhyaya transform from the above equation as 

 ( ) ( ){ } ( )2

3 2 3 2 3

1

1

1

21

1
, , , , .

2

c i
x

c ii
F x e dλλ λ λ λ λ

π λ
λ λ λ

+ ∞

−

−

∞
= = ∫u uU  (3.7) 

We call the operator 
1−

U  in the above equation the inverse Upadhyaya transform operator. It may be noted 

from (3.7) that instead of recovering the original function ( )F x  from it we get the function ( )3F xλ . This is 

due to the fact that in the definition of the Upadhyaya transform the argument of the function is multiplied by 

3
λ . The original function ( )F x  can be easily recovered from the function ( )3F xλ   given by (3.7) by the 

simple application of the transformation 
3

/x x λ→  to it.      

  

4. RELATION OF THE UPADHYAYA TRANSFORM TO THE LAPLACE TRANSFORM AND ITS 

OTHER EXTANT VARIANTS 

 

We now show how the Laplace transform and its other variants which are currently available in the research 

literature of mathematics follow as the special cases of the Upadhyaya transform defined by (2.3) supra. 

 

4.1 The Laplace transform 
 The classical Laplace transform defined by (1.2) can be easily seen to follow from (2.3) if we choose 

1 31λ λ= =  and 2 sλ =  in (2.3).  From (2.1) this can be achieved in many ways by suitably choosing the 

values of the non-negative integers and the complex constants. The details being trivial we do not mention them 
here. Thus we have, 

 ( ){ } ( ) ( ){ } ( );1, ,1 1, ,1 .F t s s F t f s== =uU L  
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4.2 The Laplace – Carson transform 

This transform is sometimes also referred to as the ‘ s − multiplied’ form of the Laplace transform and it is 

defined by 

 ( ){ } ( ) ( )CLC L
0

; stF t s f s s e F t dt
∞

−= = ∫L  (4.1) 

for the same conditions as are mentioned with the definition of the Laplace transform in (1.2) above.  The 

subscript ‘LC’ attached to L  and f  on the left hand side in (4.1) is used by us here to signify that it is the 

Laplace – Carson transform of ( )F t  (see [49], see also, [30, (1.5), p.168]).  It is easy to infer from (2.3) that 

for the choice of parameters 
1 2

sλ λ= =  and 
3

1λ =  in it, we obtain (4.1)  which gives us that   

 ( ){ } ( ) ( ){ } ( )LC LC; , ,1 , ,1 .F t s s s s F t f s= ==uU L  

 We find it worth mentioning here that the Laplace – Carson transform perhaps appeared in the mathematical 

literature around 1948 as remarked by Elzaki et al. [16, p. 2]. Deakin [17] tells us that this transform was earlier 

more preferred to the usual definition (1.2) of the Laplace transform than at the present times because this form 

was more conveniently suited for working with ‘the Older Heaviside Operational Calculus’ by making a 

reference to his work [18]. He also points out that by the time he wrote this letter (1995-1997) to the Editor of 

the International Journal of Mathematical Education in Science and  Technology the Laplace – Carson transform 

retained ‘a considerable place in the Russian literature’ by referring to the work of Ditkin and Prudnikov [19]!      
  

4.3 The Sumudu Transform 

The Sumudu transform was introduced by Watugala [20] in 1993 to solve differential equations and some 

problems in control engineering. It was defined for the functions ( )F t  belonging to the set A  defined by (2.2) 

as below: 

 ( ){ } { } ( ) ( )/

1 2
0

1
; , ,t uF t u u e F ut dt

u
η η

∞
− ∈= = −∫S S  (4.2) 

In the literature it also appears in slightly another form as given below, which is obtained by rewriting (4.2) by 

setting /v t u=  to get 

 ( ){ } { } ( ) ( )1 2
0

; , ,vF t u u e F uv dv u η η
∞

− ∈= = −∫S S  (4.3) 

Soon after the above paper of Watugala [20], another paper by Weerakoon [21] followed where she applied the 

Sumudu transform to solve partial differential equations.  It can easily be inferred from (2.3) and (4.2) that when 

we choose 21

1

u
λ λ= =  and 3 1λ =  in (2.3) we obtain (4.2) thereby implying the relation 

 ( ) ( ){ } { }
1 1 1 1

; , ,1 , ,1 ; .F t F t u u
u u u u

 
= 



 
= = 

  
U Su S  

Similarly, the choice 
21

1λ λ= =  and 
3

uλ =  in (2.3) gives (4.3), thence implying that 

 ( ){ } ( ) ( ){ } { };1,1, 1,1, ; .F t u u F t u u== =U Su S  

Watugala [20] proclaimed that the Sumudu transform (4.2) introduced by him was a ‘new integral transform’. 

But this claim of Watugala [20] was refuted by Deakin [17] who pointed out that the Sumudu transform defined 

by (4.2) could be arrived at from the definition of the Laplace – Carson transform (4.1) ‘by means of the trivial 

change of the variable’ 
1

s
u

= . He concluded that the Sumudu transform “is nothing other than a thinly 

disguised form of the familiar Laplace transform. Indeed it already has some currency in this form [22, section 

2.1]. All the properties demonstrated for the ‘Sumudu transform’ in [20, 21] may very readily be deduced  from 
the corresponding properties for the standard Laplace  transform, and this is an exercise I leave to the reader”.   

Deakin [17] also remarked that ‘The origin of the name ‘Sumudu transform’ is nowhere given either in [20] or 

[21], nor can I enlighten readers myself. (No author named Sumudu has ever been noticed by Mathematical 

Reviews).’ Similar comments are made by Al-Omari and Agarwal [23, p.17] where they write: “While we are in 

agreement with most of the claims expounded by Watugala, the transform is not so new as proclaimed; the 

Sumudu transform is connected to the s -multiplied Laplace transform. But, this, however, in no way 

diminishes its importance or usefulness; Belgacem et al. (2003)” [24].  The present author would like to remark 

here that over the past twenty six years the integral transform named Sumudu transform has been applied to 
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study a wide variety of phenomenon by a number of different authors and it has gained wide acceptance in the 

mathematical research literature and many research papers written on this topic and its applications have now 

found place in the records of the  world’s two topmost and the most prestigious research databases of 

mathematics, viz. the Mathematical Reviews/MathSciNet of the American Mathematical Society, USA and the  

zbMATH (formerly, Zentralblatt MATH), Germany  of the European Mathematical Society, for both of whom  

this author is a permanent reviewer.  The author would like to mention here only just two papers, the reference  

numbers [23] and [25], in this connection only for instance. In the light of this discussion and the 

aforementioned remarks of the very respected learned authors of the reference nos. [17] and [23], as far as this 

author is aware of at present, now, this author would like to share here his personal experience and motivation 

for writing this paper. Most humbly he would like to inform the respected readers of this paper that the Founder 

Editor-in-Chief and the current Managing Editor of this Journal, Prof. Dr. A.K. Sharma, who himself is also a 

great teacher for this author as well as one of his greatest mentors, had entrusted the responsibility of reviewing 

a  manuscript for  possible publication in this journal sometimes back. While going through that manuscript this 

author was introduced  for the first time to one of the variants of Laplace transform introduced recently by  an 

author whose results and definition were made use of  in that manuscript. It was just out of curiosity that this 

author chose to pursue the field of study that he was exposed to for the first time. This led to this author’s first 

time introduction with the numerous other variants of the classical Laplace transform that have appeared in the 

literature so far and are mentioned in the abstract of this paper.  Having felt the need that all these various 
varieties of new Laplace transforms  can be suitably combined together and fused into a more compact form 

which  is a generalization of the classical Laplace transform, this author decided to introduce this most versatile 

and robust generalization of the classical Laplace transform, which he prefers to call the Upadhyaya Integral 

Transform, or the Upadhyaya  Transform (UT) for brevity, in the memory of his late father Dr. Urba Datt 

Upadhyaya, who being a teacher and researcher himself,  had initiated  this author into the study of mathematics 

during this author’s early formative years and who had always encouraged and inspired this author to keep 

contributing something new  to this subject till he breathed his last in the year 2013. The only reason for this 

disclosure is the inspiration drawn by this author  from reading the work of the very learned and this author’s 

very respected mathematician  Prof. M.A.B. Deakin [17] of Monash University, Clayton, Australia  and the very 

learned and respected authors of the reference no. [23]. This author would also most humbly like to request the 

respected readers of this paper that as they go through the details of the theory of the Upadhyaya transform as 
developed in the next section of this paper, they will notice that all the results established here are parallel to the 

corresponding results of the existing theory of the Laplace transform and the above quoted remarks of the 

respected Prof. Deakin [17] in the context of the Sumudu transform of Watugala [20] may also apply very well 

here and most of the respected readers and critics of this paper may naturally ask the question ‘Why,  a new 

integral transform with a new name is introduced whose kernel is essentially  the same – the  exponential 

function – which  is also the kernel of the classical Laplace transform?’ This author’s  only humble response to 

all such queries of the learned readers and critics of this paper is that this author is very much hopeful that in the 

coming years the readers, the researchers from allied branches of study like applied physics, engineering and the 

mathematicians worldwide would apply the results developed here to almost all the phenomena wherever the 

various types of integral transforms mentioned in the abstract of this paper have been very fruitfully applied 

during the recent years.  It is only after going through the vast number of research papers that have appeared in 

the topics concerning the various integral transforms as mentioned in the abstract and introductory section of 
this paper, the present author decided to put forth this unification and generalization of all these integral 

transforms as mentioned supra. Now, concluding these pertinent remarks, we proceed ahead to mention the 

other integral transforms which follow as the special cases of the Upadhyaya transform.   

 

4.4 The Natural Transform 

The Natural transform was introduced by Khan and Khan [29] in 2008. For the functions ( )F t  belonging to 

the set A  defined by (2.2) the natural transform is defined by (see also, [29, (1), p.127]) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
0

1 2; , ; , , , ,,stF t H t s u F t s u su R s u e F ut dt η η
∞

+ + −= = = −    ∈  ∫ℕ ℕ (4.4) 

(see, [31, (3.2), p.80] and [30, (3), p.4]). A simple comparison between (2.3) and (4.4) leads us to the conclusion 

that the choice 
1 2

1, sλ λ= = and 
3

uλ =  in (2.3) gives (4.4) and we thus have  

 ( ){ } ( ) ( ) ( );1, , 1, , ; , , .F t s u s u F t s u R s u+ += =  = ℕU u  

 

4.5 The Elzaki Transform 

 This transform was introduced in 2011 by  Elzaki [32]. For the functions ( )F t  belonging to the set A  defined 

by (2.2) the Elzaki transform  is defined by (see [32, (2), p. 57]) 
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 ( ) ( ) ( ) ( )/

0
1 2; ,,t vE F t v T v v e F t dt v η η

∞
− ∈= =   ∫  (4.5) 

By using the change of variable t vu=  in (4.5), it may also be rewritten as (see,  [16, (2-2), p.2]) 

 ( ) ( ) ( ) ( )2

1 2
0

,; ,t
E F t v T v v e F vt d vt η η

∞
−  ∈= = ∫  (4.6) 

With the choice 
1 2

1
,v

v
λ λ= =  and 

3 1λ = in (2.3) we get (4.5) thereby implying that 

 ( ) ( ) ( )
1 1

; , ,1 , ,1 ; .F t v v E F t v T v
v v

 
=

 
= =    

 


 
U u  

Similarly, the choice of  
2

1 2, 1vλ λ= =  and 
3 vλ = in (2.3) we arrive at (4.6) which is suggestive of the 

relation 

 ( ){ } ( ) ( ) ( )2 2; ,1, ,1, ; .F t v v v v E F t v T v= =  =U u  

 

4.6 The Aboodh Transform 

K.S. Aboodh [33] introduced this transform in 2013. For the functions ( )F t  belonging to the set A  defined in 

(2.2) the Aboodh transform is defined by (see [33, (2), p.36]) 

 ( ) ( ) ( ) 1
0

2

1
; , .vtA F t v K v e F t dt

v
vη η

∞
− ≤   ≤= = ∫  (4.7) 

If we put 
1 2

1
, v

v
λ λ= =  and 

3 1λ = in (2.3) we at once arrive at (4.7) thus implying the relation 

 ( ) ( ) ( )
1 1

; , ,1 , ,1 ; .F t v v A F t v K v
v v

 
=

 
= =   




 
uU  

 

4.7 The Kashuri and Fundo Transform 

This transform was also introduced in the year 2013 by Kashuri and Fundo [34]. For  a function ( )F t  

belonging to the set A  defined by (2.2) the Kashuri and Fundo transform is defined by 

 ( ) ( ) ( ) ( )
2/

1 2
0

;
1

, , .t vF t v v e F t dt v
v

η η
∞

−=  ∈ −  = ∫kK  (4.8) 

where, ( )
2

, 1,2

t

jF Met j
η

=≤  (see [28, (6), p. 6] and  [27, (2.11), p. 266]). A plain comparison of (2.3) with 

(4.8) shows that the choice of  1 2 2

1 1
,

v v
λ λ= =  and 

3
1λ = in (2.3) leads us to (4.8) thereby showing that  

 ( ) ( ) ( )
2 2

1 1 1 1
; , ,1 , 1 ., ;F t F t v
v v v v

v
 

= =  
 

= 


 
 

u kU K  

 

4.8 The ZZ Transform 

The ZZ transform was introduced in 2016 by Zain Ul Abadin Zafar [35]. For the function ( )F t in the set A  

defined by (2.2) the ZZ transform is defined by (see [35, (1), p. 1605]) 

 ( ) ( ) ( )
0

; , , .stH F t u s Z u s s e F ut dt
∞

−= =   ∫  (4.9) 

We can at once observe that for  the choice of 1 2,s sλ λ= =  and 3 uλ = in (2.3) gives (4.9) thus giving us the 

relation 

 ( ){ } ( ) ( ) ( ); , , , , , , .;F t s s u s s u H F t u s Z u s= =  =uU  

4.9 The Ramadan Group Transform 

The Ramadan Group Transform was introduced in 2016 by Raslan et al. [36]. For the functions ( )F t  belonging 

to the set A  defined by (2.2) the Ramadan Group Transform is defined by (see [27, (2.16), p. 267]) 
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 ( ) ( ) ( ) ( )2
0

1; , , ,, .stRG F t v s U v s e F vt d vt η η
∞

− ∈= =  ∫  (4.10) 

We see that the choice of 1 21, sλ λ= =  and 3 vλ = in (2.3) leads us to (4.10) thus establishing that 

 ( ){ } ( ) ( ) ( );1, , 1, , ; , , .F t s v s v RG F t v s U v s= =  =uU  

It is pertinent to mention here that the Ramadan Group transform is exactly the same as the Natural transform 

introduced in 2008 (see also [28, p.9]).  

 
4.10 The Mahgoub Transform (in fact, The Laplace-Carson Transform)  

This transform was introduced in 2016 by Mahgoub [37]. For the functions ( )F t  belonging to the set A  

defined by (2.2) the Mahgoub transform is defined by (see, [37, (2), p. 392]) 

 ( ) ( ) ( ) [ ]2
0

1; , .,vtM F t v H v v e F t dt v η η
∞

−= =  ∈ ∫  (4.11) 

We remark here that the Mahgoub transform is not at all a new transform but it is exactly the same as the 

Laplace –Carson transform mentioned in the subsection 4 (see, (4.1), perhaps the learned author was not aware 

of the Laplace-Carson transform). As in the case of the Laplace- Carson transform, by setting 
1 2

,v vλ λ= =  

and 
3 1λ = in (2.3) , we can at once obtain (4.11) which shows that 

 ( ){ } ( ) ( ) ( ); , ,1 , ,1 ; .F t v v v v M F t v H v= =  =uU  

 

4.11 The Kamal Transform  

 A.K.H. Seedeg [38] introduced the Kamal transform in 2016. For the functions ( )F t  belonging to the set A  

defined by (2.2) the Kamal transform is defined by (see, [38, (2), p. 452]) 

 ( ) ( ) ( ) [ ]1

/

2
0

,; , .t vK F t v G v e F t vdt η η
∞

−= =  ∈  ∫  (4.12) 

The choice of the parameters 1 2

1
1,

v
λ λ= =  and 3 1λ = in (2.3) gives us (4.12) thus establishing that 

 ( ) ( ) ( )
1 1

;1, ,1 1, ,1 ; .F t K F t v G v
v v

  
= =    

 
= 

 
uU  

 

4.12 The Mohand Transform 
 M.M.A. Mahgoub [39] introduced this transform in 2017, while in 2016 he had introduced the Mahgoub (in 

fact, he had reintroduced only the earlier well – known version of the Laplace-Carson transform) transform [37].   

For the functions ( )F t  belonging to the set A  defined by (2.2) the Mohand transform is defined by (see, [39, 

(2), p. 114]) 

 ( ) ( ) ( ) [ ]2

1 2
0

; .,,vtM F t v R v v e F t dt v η η
∞

− ∈= =   ∫  (4.13) 

We can see that the parameters 
2

1 2
,v vλ λ= =  and 

3
1λ = in (2.3) generates (4.13), to prove that 

 ( ){ } ( ) ( ) ( )2 2; , ,1 , ,1 ; .F t v v v v M F t v R v= =  =uU  

We mention here that for setting the value of the parameter 1λ  in (2.1) equal to 
2v  we can also have a choice 

11 2 1 2 0 1 3 41 , 1,, 0rm v a a a am z a a= = = = = = = = … = =  and 
0

1, 0
i

b b= =  ( )2,1,i r= …  besides 

other possible choices also. The reader would now be able to see that how our expressions for defining the 

parameters 
1 2 3, ,λ λ λ  in (2.1) are justified for giving the definition of the Upadhyaya transform in (2.3) so that 

it generalizes the Laplace transform of one variable defined by (1.2) in the broadest possible sense. 

 

4.13 The Tarig Transform 

 The Tarig transform was introduced by T.M. Elzaki and S.M. Elzaki [40-42] in 2011. For the functions ( )F t  

belonging to the set A  defined by (2.2) the Tarig transform is defined by (see, [41, (1), p. 3230] and [43, (1), p. 

13982]) 
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 ( ) [ ] ( )
2

1

/

0
0

1
; ,t uT F t u E u e F t dt

u
u

∞
−= =   ≠∫  (4.14) 

For the choice of the parameters 1 2 2

1 1
,

u u
λ λ= =  and 3 1λ = in (2.3) generates (4.13), to prove that 

 ( ) ( ) [ ]2 2 1

1 1 1 1
; , ,1 , ,1 ; .F t T F t u E u
u u u u

 
= =    

 

 
= 

 
uU  

We can also see that for the choice of the parameter 
2λ  equal to 

2

1

u
 in the Tarig transform we can see from 

(2.1) that the choice       
3 4 0 31, 1, 0( 1, , ),icm c i rm = = = = …=      

4 2 0 1, 1,z u d d d= = = =  

43 4
0

r
d dd = = …= = . Similarly, we can argue for the choice of the parameter 

1
λ  equal to 

1

u
 in the Tarig 

transform by setting the values of the various constants and other quantities involved in (2.1). There can also be 

other choices for the values of the various constants and quantities in (2.1) to achieve these desired values of  
1λ  

and 
2

λ for the Tarig transform. Our aim for this discussion here is only to highlight the importance of (2.1) 

where the parameters 
1λ ,

2λ  and 
3λ  are defined in such a manner which ensures that our definition (2.3) 

includes almost all the known and yet unknown variants of the classical Laplace transform defined by (1.2). 

 

4.14 The Sadik Transform 

 The Sadik transform was defined in 2018 by S.A. Shaikh [44]. For the functions ( )F t  belonging to the set A  

defined by (2.2) the Sadik transform is defined by (see, [44, (1), p. 101]) 

 ( ) ( ) ( )
0

1
; , , tvS F t v v e F t dt

v

αα α

β
β β

∞
−  = =  ∫F  (4.15) 

where, v  is a complex variable, α  is any nonzero real number and β  is any real number. We can see that the 

choice of the parameters 1 2

1
, v

v

α

β
λ λ= =  and 3 1λ = in (2.3) gives us (4.15) to show that 

 ( ) ( ) ( )1 1
; , ,1 , ,1 ; , , .F t v v S F t v v
v v

α α α α

β β
β β

    = =    
= 

 
uU F  

As remarked in the case of the Tarig and Mohand transforms above, we can see that we can suitably choose the 

values of the various constants and other quantities in (2.1) to obtain the desired values of the parameters 

1 2 3, ,λ λ λ  so that (4.15) becomes a special case of (2.3). When α  in (4.15) becomes any nonzero real number 

(i.e. other than a positive integer) we can remove the restriction that 
3

m is a nonnegative integer. In that case we 

can say that 
3m α=  in (2.1) is any nonzero real number (positive, negative, rational or irrational, as the case 

may be) and can take in it ( )
33 1 0 2 3 4 0 4, 1, 0, 1, 1, ,0 ,1r iv c c c c cz im d d r= = = = = … = = == = = … to 

make 2 vαλ = . Similar suitable choices of the constants and other quantities involved in (2.1) can be made to 

give
1

1

vβ
λ = .   

 

4.15 The Yang Transform  

The Yang transform was introduced in 2016 by X.-J. Yang [45]. For the functions ( )F t  belonging to the set 

A  defined by (2.2) the Yang transform is defined by (see, [45, (6), p. S640]) 

 ( ) [ ] ( )/

0
; tY F t e F t dtϖϖ ϖ

∞
−= Φ =   ∫  (4.16) 

We can easily see that the choice 1 2

1
1,λ λ

ϖ
= =  and 

3
1λ =  for the parameters in (2.3) leads us to (4.16) 

thereby showing that 
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 ( ) ( ) [ ]
1 1

;1, ,1 1, ,1 ; .F t Y F t ϖ ϖ
ϖ ϖ

  
= = Φ   =   

   
uU  

 
4.16 The Shehu Transform 

This transform was introduced very recently in this year itself (2019) by Shehu Maitama and Weidong Zhao 

[30]. For the functions ( )F t  belonging to the set A  defined by (2.2) the Shehu transform is defined by (see, 

[30, (2.1), p. 170])  

 ( ) ( ) ( )/

0
; , , st uF t s u V s u e F t dt

∞
−= =   ∫S  (4.17) 

It is easy to discern that the choice 1 21,
s

u
λ λ= =  and 

3
1λ =  for the parameters in (2.3) produces (4.17) to 

give the relation 

 ( ) ( ) ( );1, ,1 1, ; , , .,1 F t s u V s u
s s

F t
u u

 
= 

 


= =    

 
u SU  

 

4.17 The Sawi Transform 

 Mahgoub [46], who had earlier introduced the Mahgoub transform and the Mohand transform as discussed 

above, introduced this transform in this very year, i.e. 2019. For the functions ( )F t  belonging to the set A  

defined by (2.2) the Sawi transform is defined by (see, [46, (2), p. 81]) 

 ( ) ( ) ( ) [ ]1
0

2

/

2

1
, .,; t vS F t v R v e F t dt t

v
η η

∞
− ∈= =   ∫  (4.18) 

It may be quickly noted that the Sawi transform introduced in 2019 turns out to be a special case of the Sadik 

transform introduced in 2018, as (4.18) follows from (4.15) for 2β =  and  1.α = −  A simple inspection tells 

us that the choice 
21 2

1 1
,

v v
λ λ= =  and 3 1λ =  for the parameters in (2.3) produces (4.18) to show that 

 ( ) ( ) ( )2 2

1 1 1 1
; , ,1 , ,1 ; .F t S F t v R v
v v v v

 
=

 
= =    

 


 
uU  

 

4.18 The Barne’s Polynomial Integral Transform 

This Polynomial Integral Transform was given by Benedict Barnes [47] in 2016. He defined it like this: if 

( )F x  be a function defined for 1x ≥ , then the Barne’s Polynomial integral transform of ( )F x  is defined by 

(see [47, Theorem 1, p.142])  

 ( ) ( ) ( )1

1
; lnsF x s s x F x dx

∞
− −= =   ∫FB  (4.19) 

provided the integral converges. We can see that this integral transform is nothing but only a simple 

transformation of the classical Laplace transform (1.2) under the mere change of variable lnt x= . Similar 

remarks about this integral transform are made by Nuruddeen et al. [28]  when they write “ …Barnes (2016) 

[47] developed the polynomial integral transform, which we see it as a mere Laplace transform in another 
transformation” (see [28, p.2]) and also, “ … the polynomial integral transforms by B. Barnes (2016) which we 

see it as just mere Laplace transform in different transformation as he admitted too in his article” (see [28, p. 

12]).  We remark that for the same change of variable, i.e. lnt x= , the Upadhyaya transform (2.3) renders the 

following form 

 ( ){ } ( ) ( )2 1

1 1
1

3 2 3 1 32 lnln ; , , , , x F x dxF x
λλ λ λ λ λ λ λ λ

∞
− −== ∫uU  (4.20) 

provided the integral converges. The comparison between (4.20) and (4.19) at once shows that the Barne’s 

Polynomial integral transform (4.19) also follows as a special case of the Upadhyaya transform (or more 
appropriately, we may call it the Upadhyaya Polynomial Transform (UPT) in order to keep the mathematical 

terminology identical with that of B. Barne’s [47]) (4.20) when we set 1 2 31, , 1sλ λ λ= = =  in it to deduce 

that 



Lalit Mohan Upadhyaya 

481 

 
Bulletin of Pure and Applied Sciences  

Vol. 38E (Math & Stat.) No.1 / January- June 2019 

 

 ( ){ } ( ) ( ) ( )ln ;1, ,1 1, ,1 ; .F x s s F x s s= = = u FU B  

 

4.19 The Atangana-Kilicman Integral Operator Transform (AKIOT) 
 Abdon Atangana and Adem Kilicman [48] introduced the Atangana-Kilicman Integral Operator Transform 

(AKIOT) in 2013 and gave its properties and applied it to solve certain types of fractional ordinary differential 

equations (FODEs) and fractional partial differential equations (FPDEs). They defined it as follows:  

If ( )F x  be a function which is  continuous in the open interval ( )0,∞ , whose Laplace transform is 

differentiable n  times, then, the Atangana-Kilicman Integral Operator Transform (AKIOT) of  ( )F x  of order 

n  is defined by 

 ( ) ( ) ( )
0

;n n

sx nM F x s M s e x F x dx
∞

−= =   ∫  (4.21) 

(see [48, (3), p.2]). We observe that the Upadhyaya transform (2.3) under the transformation ( )nt tt F→  

transforms into the following form (which we may call the Upadhyaya Integral Operator Transform (UIOT) in 

order to make the terminology  identical with that used by Atangana and Kilicman [48])  of  ( )F x  of order n  

is defined by :  

 ( ){ } ( ) ( )2

2 3 2 31 1 1 3 3
0

; , , , , , ,
tn n nt F t n n e t F t dt

λλ λ λ λ λ λ λ λ λ
∞

−= = ∫uU  (4.22) 

Now a simple comparison of (4.22) with (4.21) shows that for the choice of  the parameters 
1 21, ,sλ λ= =  

3
1,n nλ = →  and the change of the dummy variable t x→ in (4.22) leads one to (4.21) thence showing that 

the AKIOT of  ( )F x  of order n  follows as a special case of UIOT of order n as 

 ( ){ } ( ) ( ) ( );1, ,1, 1, ,1, ; .n

n nx F x s n s n M F x s M s= =  =uU  

 

4.20 The Hankel Transform 

The well known Hankel transform is defined by (see [30, (1.6), p.168] or, [7, (7.2.8), p.345]) 

 ( ) ( ) ( ) ( )
0

;v v vs rJH F r s sr F r dr
∞

=  = ∫F  (4.23) 

where,  denotes the Bessel function of the first kind of order v  with 
1

2
v ≥ − .  If we choose the function ( )F t  

in the definition of the Upadhyaya transform (2.3) as ( ) ( )vtJ st F t  then we get 

 ( ) ( ){ } ( ) ( ) ( ) ( )2

1 1 1 3 33 2 3 3
0

2; , , , , , , . .
t

v vtJ st F t v e t J s t F t dtv
λλ λ λλ λ λ λ λλ λ

∞
−= = ∫uU  (4.24) 

It can be seen that (4.23) follows from (4.24) for the change of the dummy variable t r→  in the latter with the 

choice of parameter values 
1 2 31, 0, 1,v vλ λ λ= = = =  to yield the Hankel transform (4.23) as the following  

special case of  (4.24) 

 ( ) ( ){ } ( ) ( ) ( );1,0,1, 1,0, ; .1,
v v v

tJ st F t v v H sF r s== =  uU F  

4.21 The 2 −L Transform of Yürekli and Sadek 

Yürekli and Sadek [52] introduced the 
2

−L  transform in 1991 which is defined as (see also, [53, (1.6), p. 2 of 

21]) 

 ( ){ } ( ) ( ) ( )
2 2

2
0

; , 0.x yf x y F y xe f x dx y
∞

−= = ℜ >∫ɶL  (4.25) 

If we set 
2

1 2 3,,
2

1
1

yλ λ λ= = =  and 
2t x=  in (2.3) and define ( ) ( ) ( )2 ,

0

0

ot, herwise

f x x
F t F x


= =

≥



 ,  we 

obtain 

 ( ) ( ) ( ) ( ){ } ( )
2 2 2 2

0 0

2 2 2

2

1 1
; , 1 2 ; .
2

,
2

1 xy y xF x y e F x xdx xe f x dx f x y F y
∞ ∞

− − 
= ⋅ ⋅ = = = 

 
∫ ∫ ɶU L  
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It can now be observed from (4.20), (4.22), (4.24) and (4.25)  that by a suitable choice of the function ( )F t  

and the values of the parameters 
1 2 3
, ,λ λ λ  we can also extract several other known and unknown integral 

transforms from the basic definition (2.3) of the Upadhyaya transform. 

 

5. DEVELOPMENT OF THE THEORY OF THE UPADHYAYA INTEGRAL TRANSFORM 

 

We now begin the process of development of the theory of the Upadhyaya integral transform (UT) defined by 

(2.3) above. Since the UT is one of the broadest possible generalizations of the Laplace transform defined by 

(1.2), we develop the theory of the UT parallel to the existing theory of the Laplace transform. We point out that 

all the results which we deduce below in this section reduce to the corresponding known results for the Laplace 

transform when we set the values of the parameters 21 3, ,λ λ λ  in them as 21 1, sλ λ= =  and 3 1.λ =  This is 

only natural because the  Upadhyaya transform (2.3) is a generalization of the Laplace transform (1.2) as seen in 

the subsection 4.1 earlier. We further record here that as we have shown in the fourth section of this paper that a 
number of extant variants of the Laplace transforms are special cases of the Upadhyaya transform, therefore 

with those respective special cases as mentioned there all the results being developed in this section of the paper 

will reduce to the corresponding known or yet unknown results for these various variants of the Laplace 

transforms. Hence our results for the Upadhaya transform being developed here may be viewed as the most 

generalized results developed till date in the existing theory of the Laplace transforms.   

 
5.1 A sufficient condition for the existence of the UT   

Theorem 5.1 If the function ( )F t  is continuous or piecewise continuous in every finite interval ( )0,T  and of 

exponential order a  for t T≥ , then the UT of  ( )F t  defined by (2.3) exists for all 
2

λ  for which  

( )2 3 0aλ λℜ − >  where, ( )2 3aλ λℜ −  denotes the real part of the complex number 
2 3

.aλ λ−    

Proof  We can write (2.3) as below: 

 ( ){ } ( ) ( ) ( )2 2

2 31 1 1 3 1 3
0

2 3; , , , ,
T

t t

T
F e F t dt e F t dt tλ λλ λ λ λ λ λ λ λ λ λ

∞
− −= += ∫ ∫uU  (5.1) 

Since ( )F t  is continuous or piecewise continuous in every finite interval ( )0,T , therefore, the first integral 

on the right hand side of (5.1) exists. We now only need to ensure the existence of the second integral on the 

right hand side of (5.1) in order that the UT of ( )F t  exists.  For that we observe that 

 ( ) ( ) ( )2 2 2

1 3 1 3 1 3 .
t t t

T T T
e F t dt e F t dt e F t dt

λ λ λλ λ λλ λλ
∞ ∞ ∞

− − −≤ ≤∫ ∫ ∫  

Since, ( )F t  is of exponential order a  for t T≥ , from the Definition 1.1 there exists a positive constant K  

such that for all t T>  such that ( ) ,atF t Ke≤  which gives 

 

( ) ( )

( )
( )

2 332 2

1 3 1 1
0

1

2 3

2 3

.

, if   0.

a ta tt t

T T
e F t dt e e dt e dt

a
a

K K

K

λ λλλ λλ λλ λ

λ λ
λ

λ

λ

∞ ∞ ∞ − −− −<

= − >

<

ℜ
−

∫ ∫ ∫
 

  This shows that the second integral on the right hand side of (5.1) also exists if ( )2 3 0aλ λℜ − > .  

                                                                                                                                                                                ■            
   

5.2 The Upadhyaya – Laplace Duality  

Theorem 5.2 Suppose that for a function ( )F t both the Upadhyaya and Laplace transforms exist for the sets of 

parameters, say, 
1 2 3
, ,λ λ λ  and 

' ' '

1 2 3
, ,λ λ λ . Then the following relations hold 

 ( ){ } ( ) ( )1 2 1
1 1

3 3 3

2 2
2 3 2 3

3 3

; , , , , ; , 0.F t F t f
λ λ λ λ λ

λ λ λ
λ λ

λ
λ λ λ λ

λ

     
= = ℜ >     

     
=uU L  (5.2) 
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 ( ) ( ){ } ( )
' ' ' ' '

' ' ' ' ' '2 2 3 3 2
1 2 3 1 2 3' ' ' ' '

3 3 1 1 3

; ; , , , 0.,,F t f F t
λ λ λ λ λ

λ λ λ λ λ λ
λ λ λ λ λ

     
= = = >     

  
ℜ

  
uL U  (5.3) 

Proof To see (5.2) we consider the UT of ( )F t  and recall (2.3) as  

 ( ){ } ( ) ( )2

1 1 12 33
0

2 3; , , , , teF t dtt Fλλ λλ λ λ λ λ λ
∞

−= = ∫uU  

in which we substitute 
3

u tλ=  to get 

 

( ){ } ( ) ( )

( )

2 3/1
1 1

0
3

1 2 1

3 3

2 3 2

3 3

2 2

3

3; , , , ,

; ,  if  0.

u
F t

F

e F u

t

u

f

d
λ λλ

λ

λ λ λ λ λ

λ λ λ λ λ

λ λ λ λ λ λ
∞

−==

     
= ℜ >     

    
=



∫uU

L

 

For obtaining (5.3) we consider the Laplace transform of ( )F t and using (1.2) write 

 ( ) ( )
' '
2 3

' '
/2 2

'

3 3
0'

; tF t f e F t dtλ λλ λ

λ λ

∞
−   

= =   
   

∫L  

wherein  we put 
'

3t vλ=  to see 

 

( ) ( ) ( )

( ){ } ( )

' '
2 2

' ' '
' ' ' '2 2 3
3 3 1 3' ' '

3 3 1

' ' '
' ' ' ' ' '3 3 2

1 2 3 1 2 3' ' '

1 3

0

1

0

,  if

;

; , , , , 0.  

v vF t f e F dv e F dv

t

v

F

vλ λλ λ λ
λ λ λ λ

λ λ λ

λ λ λ
λ λ λ λ λ λ

λ λ λ

∞ ∞
− −   

= = =   
 
  

=

   

 
= > 


ℜ



∫ ∫

u

L

U

 

Note that in the last equality above the quantity 

'

2

'

3

0
λ

λ

 
> 

 
ℜ  enters automatically as we have assumed that 

( )
'

2

'

3

;F t
λ

λ

 
 
 
L  exists.                                                                                                                                         ■  

As per the convention prevalent in the current mathematical research literature (see, for example, [23, (2.7), pp. 
18-19]; [50, Theorem 2.3.1 on p.3, Theorem 3.1.1, Theorem 3.2.1 and  Theorem 3.3.1 on p.4, Theorem 3.4.1 

and Theorem 4.1.1 on p. 5, Theorem 4.2.1 and Theorem 4.3.1 on p.6 and Theorem 4.4.1 on p.7]; [51, p.1, 2, 

Section 3 and (3.2) on p. 5, Second Entry of Table 5.1  on p.18])  we call the relations (5.2) and (5.3) above the 

Upadhaya-Laplace Duality Relations (ULD). It is also pertinent to mention here that similar other duality 

relations between the Upadhyaya transform and other extant variants of the Laplace transforms  as mentioned in 

the preceding section of this paper also exist and they can be established along the similar lines. This will be the 

subject of one of the future papers of this author. 

 

5.3 Upadhyaya Transforms of Some Elementary Functions  
In view of (3.7), if we disallow null functions (see, [6, p.9 and p.42]) we can see that the  inverse Upadhyaya  

transform of a given function is unique. The same can be calculated from (3.7) by finding the sum of residues of 
the integrand utilizing the Residue Theorem (see [6, (24), p. 143 and Chapter 7]). Now we calculate the 

Upadhyaya transform of some elementary functions which are often utilized in various branches of mathematics 

and also occur frequently in the problems of physics and engineering. The Upadhyaya transform of the 

trigonometric and hyperbolic functions will be given in the sequel. 

            For finding the UT of 
at  where a  is any complex number, we have from (2.3),  

 

{ } ( )

( )
( ) ( )

2 2

2 3 3
0 0

3

2

1 1 3 1

1

1

2

; , ,

1
, 0, 1.

aa t ta a

a

a

tt e dt e t dt

a
a

λ λλ λ λ λ λ λ λ

λ λ
λ

λ

∞ ∞
− −

+

= =

Γ +
= ℜ > ℜ > −

∫ ∫U

 (5.4) 

From (5.4) follows that 
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( )

( ) ( )1

1 2 3

2 1

2

3

1
0, 1.

1
; , ,

1
,

a

a

a

t
a

a
λ λ

λ
λ

λ
λ

λ
−

+

 
= ℜ > ℜ 


> −

Γ +
U  (5.5) 

Some special cases of (5.4) and (5.5) are as follows: 

When ,a n n= ∈ℕ ( the set of natural numbers) it follows from (5.4) and (5.5) at once that 

 { } ( )1
1

3
2 3 21

2

!
; , , , 0

n
n

n

n
t

λ λ
λ λ λ λ

λ +
= ℜ >U  (5.6) 

and   

 ( )2

3

1

1 2 31

2 1

1
; , , 0.

!
,

n

n

n n

t
λ λ λ λ

λ λλ
−

+

 
= 


ℜ >


U  (5.7) 

When 0a =  (5.4) and (5.5) give 

 { } ( )1
1 2 3 2

2

1; , , , 0.
λ

λ λ λ λ
λ

= ℜ >U  (5.8) 

and 

 ( )1

1 2 3

2

2

1

1 1
; , , 0, .λ λ λ

λλ
λ−  

= ℜ


>


U  (5.9) 

 

5.4 The Linearity Property of UT 

Theorem 5.3 Let ( ) ( )1 2,F t F t  be two functions with UTs ( )31 21, ,λ λ λu and ( )2 2 31, ,λ λ λu  relative to the 

parameters 
21 3, ,λ λ λ  and 

1 2,c c  be any constants then 

 
( ) ( ){ } ( ){ } ( ){ }

( ) ( )
1 1 2 2 1 1 1 1 22 3 2 3 2 3

2

2 1

1 3 2 31 1 2 2 1

; , , ; , , ; , ,

, , , ,

c F t c F t c F t c F t

c c

λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ

+ +

+

=

= u u

U U U
 (5.10) 

Proof This result follows immediately from (2.3) by using the property of linearity of integrals. It can be easily 

extended to the case of more than two functions.                                                                                                  ■  

  

5.5 First Shifting (First Translation) of UT 

Theorem 5.4 If ( ){ } ( )2 3 2 31 1; , , , ,F t λ λ λ λ λ λ= uU  then 

 ( ){ } ( ){ } ( )2 3 2 3 21 1 3 1 33; , , ; , , , ,ate F t F t a aλ λ λ λ λ λ λ λ λ λ λ= − −u=U U  (5.11) 

Proof Using (2.3) we write the left hand side of (5.11) as 

 
( ){ } ( ){ } ( ) ( )

( ){ } ( )

2 332

1 1 3 1 3
0 0

1 3

2

1

3

2 3 2 33

; , ,

; , , , ,

a taat tte e F t dte F e F t dtt

F t a a

λ λλλλ λ λλ λ λ

λ λ λ λ λ λ λ λ

λ
∞ ∞ − −− ==

−= −

∫ ∫
= u

U

U

 

                                                                                                                                                                               ■   
Example 5.5 As an illustration of the first shifting theorem of UT we find the UT of the function 

( )
( ), 1

1

a btt e
b

a
ℜ > −

Γ +
. From (5.4) and (5.11) follows that 

 
( ) ( )

( )
( ) ( )

2 3 2 3 3

3
2 31

2 3

1 1

1

; , , ; , ,
1 1

, 0, 1.

a bt a

a

a

t e t
b

a a

b a
b

λ λ λ λ λ λ λ

λ λ
λ λ

λ λ
+

      
= −   

Γ + Γ +      

= ℜ − > ℜ > −
−

U U

 (5.12) 

which also renders the companion result for the inverse UT of the above function as 

 

( ) ( )
( ) ( )2 3 2 31

32 3

1

1

1

1
; , , , 0, 1.

1

a bt

a a

t e
b a

ab
λ λ λ λ λ

λ λλ λ
+

−
  

= ℜ − > ℜ > − 
Γ +−  

U  (5.13) 
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A special case of (5.12) deserves special mention. When 0,a =  (5.12) reduces to 

 { }
( )

( )2 3 2 3

2 3

1
1

; , , , 0.bte b
b

λ
λ λ λ λ λ

λ λ
= ℜ − >

−
U  (5.14) 

and the inverse UT formula for recovering the original function is 

 
( )

( )2 3 2 3

2 3

1

1

1

1
; , , , 0.

bte
b

b
λ λ λ λ λ

λ λ λ
−
  

= ℜ − > 
−  

U  (5.15) 

If we set ( )1b ik i= = −  in (5.14) we see that 

 { }
( )

( )2 3 2 3

2 3

1
1

; , , , 0.ikte ik
ik

λ
λ λ λ λ λ

λ λ
= ℜ − >

−
U  

Noting that cos sinikte kt i kt= +  and the linearity property of UT (Theorem 5.3) in the above relation yields 

 { } { }
( )

( )( )
( )2 3 2 3

2 3 2 3 2 2

2 3 2 3 2

1 1

1 1 2

3

cos ; , , sin ; , , .
ik ik

kt i kt
ik ik k

λ λ λ λ λ λ
λ λ λ λ λ λ

λ λ λ λ λ λ

+ +
+ = =

− + +
U U  

Now equating the real and imaginary parts this last relation at once admits 

 { } ( )1
1

2
2 3 2 3222

2 3

cos ; , , , 0kt ik
k

λ λ
λ λ λ λ λ

λ λ
= ℜ − >

+
U  (5.16) 

and  

 { } ( )1
1

3
2 3 2 3222

2 3

sin ; , , , 0.
k

kt ik
k

λ λ
λ λ λ λ λ

λ λ
= ℜ − >

+
U  (5.17) 

for which the  corresponding formulae of inverse UT for recovering the original functions are respectively 

 ( )2
2 3 2 3

1

122 2

2 13

cos
; , , , 0

kt
ik

k

λ
λ λ λ λ λ

λ λ λ
−  

= ℜ − > 
+ 

U  (5.18) 

and  

 ( )1

12

1

2 3 2 32 2

2 3 3

1 sin
; , , , 0.

kt
ik

k k
λ λ λ λ λ

λ λ λ λ
−  

= ℜ − > 
+ 

U  (5.19) 

For finding the UT of the hyperbolic functions we proceed as below:  

 

{ } ( ) ( )

( ) ( )( )

2 2

2 2

3 3

3 3

1
1 1 3

1 1

3 3

2 3
0 0

0
2 2

sinh ; , , sinh
2

1 1
,

2 2

a at t

a

t

tt a

tat e a e e e dt

e e dt
a a

t dt λ λλ λ

λ λ λ λ

λ
λ λ λ λ λ

λ λ

λ λ λ λ

∞ ∞
−− −

∞ − − − +

= = −

 
= − = − 

− + 

∫ ∫

∫

U

 

for ( )2 3 0aλ λℜ − >  and  ( )2 3 0aλ λℜ + > , which on simplification yields,  

 { } ( )1 3
2 3 2 21 2 32

2 3

sinh ; , , , 0.
a

at a
a

λ λ
λ λ λ λ λ

λ λ
±= ℜ >

−
U  (5.20) 

The inverse UT formula corresponding to the last result is  

 ( )1

1 2 32 2 32 2

2 3 1 3

1 sinh
; , , , 0.

at
a

a a
λ λ λ λ λ

λ λ λ λ
−  

= ℜ > 
−

±


U  (5.21) 

Similarly, we can show that 

 { } ( )21
1 2 3 2 2

2

2 32

3

cosh ; , , , 0.aat
a

λ λ
λ λ λ λ λ

λ λ
±= ℜ >

−
U  (5.22) 

and 
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 ( )2
2 3

1

1 2 322 2

2 3 1

cosh
; , , , 0.

at
a

a

λ
λ λ λ λ λ

λ λ λ
−  

= ℜ > ±
− 

U  (5.23) 

Following Spiegel [6, p.3] we provide yet another example of the first shifting of UT below: 

 

Example 5.6 From (5.16) we can write { } 2
2 3 2 2

1

2 3

1cos ,
4

2 ; ,t
λ λ

λ λ λ
λ λ

=
+

U  which in view of (5.11) at once 

yields that { } { }
( )

( )
1 2 3

2 3 2 3 31 2

3

1 2

2 3

, , , ,cos2 ; cos2 ; .
4

te t t
λ λ λ

λ λ λ λ λ λ λ
λ λ λ

− = =
+

+
+ +

U U  It can be seen that 

in the special case when 
1 2 3

1, , 1sλ λ λ= = = , when the UT reduces to the Laplace transform, this expression 

gives { } { }
( )

( )
{ }2

cos2 ; cos2 ; cos 2 ;
1

1, ,1 1, 1,1
1 4

t te t t
s

s
s

ts e s− −+
+= =

+ +
=U U L  as given in [6, p.3]. 

It can also be seen here that, as an illustration of the Upadhyaya-Laplace Duality relation (5.3), we can also 

obtain the UT of the function cos 2te t−
 with respect to the parameters 

' ' '

1 2 3
, ,λ λ λ  given that its Laplace 

transform with respect to the parameter s  is 
( )

( )
2

1

1 4

s

s

+

+ +
.  To that end we start from the left hand side of (5.3) 

as follows 

 

( )
( )

( )
( )

{ }

'

2
' ' '' '
2 3 32 3

' ' ' ' 2'
3 2 3 32

'

3

' ' '' '
2

2

3 1 ' ' '3 3
1 2 3' '

2

2
' ' ' 2

1 12 3 3

1

cos 2 ;
4

1 4

cos2 ; .,
4

,

t

t

e t

e t

λ
λ λ λλ λ

λ λ λ λλ

λ

λ λ λλ λ
λ λ λ

λ λλ λ λ

−

−

+
 

= = 
  + 

+ + 
 

 
 = =
 +

+

+ 

+

+
L

U

 

   
   
5.6 Second Shifting (Second Translation) of UT 

Theorem 5.7 Let ( )F t  be a function with UT  ( ){ } ( )1 2 3 2 31; , ,, ,F t λ λ λ λ λ λ= uU . Let  

 ( )
( )

( ) ( )
,

0,

F t a t a
G t F t a H t a

t a

 − >
= = − −

<
 

where, ( )H t a−  is the Heaviside step function defined by (3.3). Then 

 ( ) ( ){ } ( ){ } ( )2 3 2 3/ /

1 2 3 1 2 3 2 31; ; ,, , , , , .
a a

F t a H t a F te e
λ λ λ λλ λ λ λ λ λ λ λ λ− −=− − = uU U  (5.24) 

Proof From the definition of UT (2.3) leads us to 

 ( ){ } ( )2

3
0

1 2 3 1, ,; .uG u e G u duλλ λ λ λ λ
∞

−= ∫U  

Noting that,  

 ( )
( )3 3

3

3

,

0,

F u a u a
G u

u a

λ λ
λ

λ

 − >
= 

<
 

the last expression gives 

 ( ){ } ( )2

3
1 2 3 1 3

/
, ,;

u

a
G u e F u a du

λ

λ
λ λ λ λ λ

∞
−= −∫U  

which on putting 3v u aλ= −  changes into 
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 ( ){ } ( )2 3 2 31
1 2 3

/ /

0
3

, ,; .
a v

G u e e F v dv
λ λ λ λλ

λ λ λ
λ

∞
− −= ∫U  

Now substituting 3v wλ= , the above expression finally yields 

 ( ){ } ( ) ( ){ }2 3 2 32

1 2 3 1 1 2 3

/ /

3
0

; ; ., , , ,
a aw

G u e e F w dw e G u
λ λ λ λλλ λ λ λ λ λ λ λ

∞
− −−= =∫U U  

                                                                                                                                                                                ■  
Alternative Proof of the Second Shifting Theorem of UT by using the ULD 
A shorter proof of (5.24) can be given by invoking the Upadhyaya-Laplace Duality (ULD) (5.3) which gives 

that for any function ( )F t  its Laplace transform and UT are connected by the relation 

 ( ) ( ){ }3
2 3

3

2
1

1

; , ,; .F F tt
λ λ

λ
λ

λ λ
λ

 
= 

 
L U  (5.25) 

From Speigel [6, (4), p. 3] we have ( ){ } ( ){ }; ; ,asG t s e F t s−=L L  which for 2

3

s
λ

λ
→ gives 

 ( ) ( )2 3/

3 3

2 2; ; .aG t e F tλ λλ λ

λ λ
−   

=   
   
L L  (5.26) 

Now on using (5.25) on both sides of  (5.26) yields 

 ( ){ } ( ){ }2 3

1 2 3 1

/3
2

1

3
3

1

, , ,; ,; aG F tet λ λλ λ λ λ λ
λ λ

λ λ
λ−=U U  

from where the sought result follows immediately.                                                                                              ■  

 

An illustration of the Second Shifting Theorem of UT is given below: 

Example 5.8 Following Spiegel [6, p.4] we consider ( ) 3F t t= , then { }3

1 2 3

3

1 3

4

2

3
, ,

!
;t

λ λ
λ λ λ

λ
=U  (from (5.6)

),  thus (5.24) gives  

 ( ) ( ){ } 2 3

3
21 3

4

2

3 /

1 2 3

3!
2 ; , .,2t H t e λ λλ λ

λ λ λ
λ

−− − =U  

 This result reduces in the limiting case (when 
1 2 31, , 1sλ λ λ= = = ) to the known result 

( ) ( ){ }
2

3

4

6
2 2

se
t H t

s

−

− − =L  (see Spiegel [6, p.4]). 

 

5.7 Change of Scale Property of UT 

Theorem 5.9 Let ( ){ } ( )1 2 3 2 31; , ,, ,F t λ λ λ λ λ λ= uU  then 

 ( ){ } ( ) 1 2 1 2
1 2 3 3 3; ;, , , , , , .F at F t

a a a a

λ λ λ λ
λ λ λ λ λ

 
= =

 
 

  



uU U  (5.27) 

Proof Let ( ) ( ).G t F at=  Then 

 ( ){ } ( ) ( )2 2

1 2 3 3 3
0

1 1
0

; , , ,u uG u e G u du e F a u duλ λλ λ λ λ λ λ λ
∞ ∞

− −= =∫ ∫U  

which upon putting au v= gives 

 ( ){ } ( ) ( )21 1 2
1 2 3

/

33
0

, , ,; ; .,v aF au e F v dv F v
a a a

λλ λ λ
λ λ λ λ λ

∞
−  

= =  
 

∫U U           

                                                                                                                                                                                ■  
An illustration of the Change of Scale Property of UT now follows: 
 

Example 5.10 Following Spiegel [6, p.3] we consider ( ) sinF t t=  which gives  
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 { } 1
1 2 3

3

2 2

2 3

si , ,n ;t
λ λ

λ λ λ
λ λ

=
+

U , 

thus  follows 

 { }

1

1
1 2 3 2

2

3

3

2 2

2 32

3

33
, ,sin3 ; .

9

3

t

λ
λ

λ λ
λ λ λ

λ λλ
λ

 
 
 = =

+ 
+ 

 

U  

This expression in the limiting case 
1 2 3

1, , 1sλ λ λ= = =  gives the known result (see [6, p.3])  

 { } { }2

3
sin3 ;1, ,1 sin 3 ; .

9
t s t s

s
= =

+
U L  

 

5.8 UT of Derivatives 

Theorem 5.11 If ( ){ } ( )1 2 3 2 31; , ,, ,F t λ λ λ λ λ λ= uU   and if ( )F t  is continuous for 0 t N≤ ≤  and is of 

exponential order for t N> , while ( )'F t is sectionally continuous for 0 t N≤ ≤  then 

 ( ){ } ( ){ } ( )1 2 3 1 2 3
2 1

3 3

, , , ,' ; ; 0 ,F t F t F
λ λ

λ λ λ λ λ λ
λ λ

= −U U  (5.28) 

and 

 ( ){ } ( ){ } ( )1 2 3 2 3
1 1

2

3 3

, , , ,' ; ; 0 .F t F t F
λ λ

λ λ λ λ λ λ
λ λ

= −U U  (5.29) 

Proof From (2.3) we have 

 ( ){ } ( )2

3
0

1 2 3 1, ,' ; ' .
t

F t e F t dt
λλ λ λ λ λ

∞
−= ∫U  

Put 
3u tλ=  to get 

 ( ){ } ( ) ( ) ( )2 23 31 1 1/ /2

21
0 0

3 3

2 3

3

' ; ', , 0
u u

F t e F u du F e F u du
λ λ λ λλ λ λ λ

λ λ λ
λ λ λ

∞ ∞
− −= = − +∫ ∫U  

which on putting 
3u tλ=  in the last integral yields 

 ( ){ } ( ) ( )21 1
1 2 3 3

3

2

0
3

,; 0,'
t

F t F e F t dt
λλ λ λ

λ λ λ λ
λ λ

∞
−= − + ∫U  (5.30) 

Now (5.28) follows from (5.30) if we take out 2

3

λ

λ
 outside the second integral on the right hand side of (5.30) 

and interpret the remaining expression as ( ){ }1 2 3, ,;F t λ λ λU . Similarly, by taking out 

3

1λ

λ
 outside the 

second integral on the right hand side of (5.30) and interpreting the remaining expression as 

( ){ }2 2 3, ,;F t λ λ λU produces (5.29).                                                                                                                ■  

 

Example 5.12 Following Spiegel [6, p.4] we take ( ) cos3F t t= , which gives ( )' 3sin3F t t= −  and 

( )0 1F =  then  

 

( ){ } { } { }

( )

2 1

3 3

2

1 2 3 1 2 3 1 2 3

1

3

2 1

2 2
32 3

' ; 3sin3 ; cos3, , , , , , 1;

.
9

F t t t
λ λ

λ λ λ λ λ λ λ λ λ
λ λ

λ λ

λλ λ λ

λ

= − = −

−

×

+
=

U U U

 

This result in the limiting case when 
1 2 3

1, , 1sλ λ λ= = =  gives the known result (see [6, p.4]) 
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 { } { }
2

2 2
, , 3sin3 ;

9
3sin3 ;1 1 1 .

9 9
t s

s
t s

s s
−

+
− =

+

−
− = + =U L  

For finding the UT of the second derivative of ( )F t  we assume that ( )F t  and ( )'F t  are continuous 

in 0 t N≤ ≤  and of exponential order for t N>  while ( )''F t  is sectionally continuous for   0 t N≤ ≤  then 

 ( ){ } ( ){ } ( ) ( )1 1

2

3 3 3

2

2 2
1 2 3 1 2 3'' ; , , ; , , 0 ' 0F t F t F F

λ λ λ λ
λ λ λ λ λ λ

λ λ λ

 
= − − 
 

U U  (5.31) 

To prove the result of (5.31) we let ( ) ( )'G t F t=  then ( ) ( )' ''G t F t= thus 

 ( ){ } ( ){ } ( ){ } ( )2 1
1 2 1

3 3

3 1 2 3 2 3'' ; , , ' ; ; 0, , , ,F GG t G tt
λ λ

λ λ λ λ λ λ λ λ λ
λ λ

−= =U U U  

on using (5.28), which may be rewritten as 

 ( ){ } ( ){ } ( )1 2 3 2 3
2 1

1

3 3

'' ; , , ,; ' 0,' .F t FF t
λ λ

λ λ λ λ λ λ
λ λ

= −U U  

 A further application of  (5.28) on the right hand side of this equation leads us to (5.31).  By induction we may 

similarly show that the UT of the 
thn - derivative of  ( )F t  is given by 

 

( ) ( ){ } ( ){ } ( ) ( )

( ) ( ) ( )

1 2

1 2 1 2

1

3 3 3

3

2
1 2 3 1 2

1 2 1

3

2

1

3 3

; , , ; , , 0 ' 0

'' 0 0 .

n n

n n

n

n

n

n

n

F t F t F F

F F

λ λ λ λ λ
λ λ λ λ λ λ

λ λ λ

λ λ λ

λ λ

− −

−

−

−

−

 
= − − 
 

− −…−

U U

 (5.32) 

 

5.9 UT of Integrals 

Theorem 5.13 Let ( ){ } ( )1 2 3 2 31; , ,, ,F t λ λ λ λ λ λ= uU  then  

 ( ){ } ( ){ } ( )3 3
2 3

2 2

1 2 3 1 2 3 1
0

; ; , ,, , , , .
t

F tF u du
λ λ

λ λ λ λ λ λ λ λ λ
λ λ

= =∫ uU  U  (5.33) 

Proof Let ( ) ( )
0

t

F u dG ut = ∫ , then ( ) ( )'G t F t= and ( ) ( )
0

0
0 0.F u duG = =∫  Now, 

 ( ){ } ( ){ }1 2 3 1 2 3, ,' ; ; , ,G t F tλ λ λ λ λ λ=U U  

Or, 

 ( ){ } ( ) ( ){ }2 1
2 3 1 2 31

3 3

, , ,0 ; ,;G t G F t
λ λ

λ λ λ λ λ λ
λ λ

− =U U  

which at once yields (5.33) after a little simplification.                                                                                         ■  
 

Example 5.14 Following Spiegel [6, p.4] we consider ( ) sin 2F t t=  which yields   

 { } 1
1 2 3

3

2 2

2 3

, ,
2

sin 2 ; .
4

t
λ λ

λ λ λ
λ λ

=
+

U  

Thus,  

 { } ( )
3 1

2

3 3

2 2 2 20
2 2 3 2 2

1
1 2

3

3

2 2
sin 2 ; .

4 4
, ,

t

udu
λ λ λ λ λ

λ λ λ
λ λ λ λ λ λ

= ⋅ =
+ +∫U  

This result for the limiting case 
1 2 31, , 1sλ λ λ= = = gives the known result (see [6, p.4]) 

 { } ( ) { }0 02

2
sin 2 ;1, ,1 sin 2

4
; .

t t

udu s udu s
s s

= =
+∫ ∫U L  
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5.10 UT for Multiplication by Powers of t  

Theorem 5.15 For any natural number n , if the UT of any function ( )F t , i.e.  ( ){ }1 2 3, ,;F t λ λ λU  

( )2 31, ,λ λ λ= u  is differentiable n − times with respect to the parameter 
2

λ , then we have 

 ( ){ } ( ) ( ){ }{ } ( ) ( ){ }1 2 32 3 3 1 2 3 3 1

2 2

, ,; ., ,; , ,
n n

n nn

n n

d d
t F t F t

d d
λ λ λ λ λ λ λ λ λ λ λ

λ λ
= − = − uU U (5.34) 

Proof We observe that for 1,n =  

 

( ){ }{ } ( ) ( ){ }

( ) ( ) ( ) ( ) ( ){ }

2 2

2 2

1 2 3 1 1

2 2 2

1
1 3 1 2 3

3 3

3 3
0 0

3 3
0 0

;

1

, ,

,; ,

t t

t t

d d
F t e F t dt e F t dt

d d

t e F t dt e t F t dt tF t

λ λ

λ λ

λ λ λ λ λ λ λ
λ λ λ

λ
λ λ λ λ λ λ λ

λ λ

∞ ∞
− −

∞ ∞
− −

∂ = =
   ∂

= − = − = −

∫ ∫

∫ ∫

U

U

 

which gives that 

 ( ){ } ( ) ( )2

1 2 3 3
0

3 1

2

, ,; td
tF t e F t dt

d

λλ λ λ λ λ λ
λ

∞
− = −

  ∫U  

showing that (5.34) holds for 1.n =  Suppose it holds for the case n r= , r  being a positive integer greater 

than 1 thus, we can write   

 ( ){ }{ } ( ){ }1 2 3 1 2 3

32

1
, , ,; ; .,

r
r

r

r

d
F t t F t

d
λ λ λ λ λ λ

λ λ

 −
=  
 

U U  

Differentiating both sides of the above equation with respect to 
2λ  gives 

( ){ }{ } ( ){ }{ } ( )( ) ( )

( )( ) ( ) ( ) ( ) ( ){ }

2

2 2

1 2 3 1 2 3 1 3

3 2 3 2

1

1 3 1 3 1 2 3

3 3 3

1

31 0
2

1 1

1

3 3
0 0

1 1
; ;

1 1 1
; .

, , , ,

, ,

r r
r

tr

r

r r r

t t r

r

r r

d d
F t t F t e F t dt

d d

e t F t dt e F t dt t Ft t

t

t

λ

λ λ

λ λ λ λ λ λ λ λ λ
λ λ λ λ λ

λ λ λ λ λ λ λ λ λ
λ λ λ

+
∞

−

+

+ +
∞ ∞

− − ++

   − − ∂
=    

∂   

     − − −
= − = =     
   

=

 

∫

∫ ∫

U U

U

(5.34) now follows immediately from this equation by the principle of induction.                                              ■  

 

Example 5.16 Following Spiegel [6, p.5] we consider ( ) 2tF t e= , then { } 1
3

2

1 2

2 3

,
2

; ,te
λ

λ λ λ
λ λ−

=U  

which gives 

 ( )
( )

1 1
3 2

2 2 3 2

3

3
2 2

d
c

d

λ λ λ
λ

λ λ λ λ λ

 
− =

−


 −
 

and 

 { } ( )
( )

2
22 1 1

1 2 3 3

2

2
2 3

32

3 2 32

2
; ., ,

2 2

t d
t e

d

λ λ λ
λ λ λ λ

λ λ λ λ λ



− −


= − = 

 
U  

Both these results reduce in the limiting case 
1 2 3

1, , 1sλ λ λ= = =  to the known results of [6, p.5] viz., 

{ }
( )

{ }2 2

2

1
;1, ,1

2
;t tte s

s
te s= =

−
U L  and { }

( )
{ }2 2 2

3

2 2
;1, ,1

2
; .t tt e s

s
t e s= =

−
U L  

 

5.11 UT for Division by t  

Theorem 5.17 Let ( ){ } ( )1 2 3 2 31; , ,, ,F t λ λ λ λ λ λ= uU , if 
( )

0
lim
t

F t

t→
 exists then 

 
( )

( )
2

2 3 21 2 3 1

3

1
,,; , ., d

F t

t λ
λ λ λ λ λ λ λ

λ

∞ 
= 

 
∫ uU  (5.35) 
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Proof By the definition of UT  of ( )F t  we have 

 ( ) ( )2

1 1
0

32 3, ,
t

e F dt t
λλ λ λ λλ

∞
−= ∫u . 

If we integrate with respect to 2λ  from 2 2λ λ= to 2λ = ∞ on both sides of this relation then 

 ( ) ( )
2

2

2
2 3 2 21 1 3

0
, , .

t
d td e F dt

λ

λ λ
λ λ λ λ λλ λ

∞ ∞∞
−=∫ ∫ ∫u  

Since the variables 
2

λ  and t  are independent therefore the order of integration on the right hand side of the last 

relation can be interchanged to achieve 

 

( ) ( ) ( )

( ) ( ) ( )
( )

2 2

2 2 2

2 2

2 2 2
1 1 3 1 32 3 2 2 2

0 0

31 3 1 3 1 3 1 3
0 0

2
0

3

,

, ,

; .,

t t

t t t

dt e F d F dt e d

F te e e
F dt F dt F d

d t t

t t t t
t t t t

λ λ

λ λ λ

λ λ λ

λ λ

λ λ λ λ λ λ λ λλ λ

λ λ λ λ
λ

λ λ λ λ λ λ

∞ ∞ ∞ ∞
− −

∞− −

∞

−
∞ ∞

=

∞

=

  
=

=

= = =   
−   

∫ ∫ ∫∫ ∫

∫ ∫ ∫

u

U

         

                                                                                                                                                                       ■  
5.12 UT of Periodic Functions 

Theorem 5.18 Let ( )F t  be a periodic function with period T , i.e. ( ) ( )F t nT F t+ =  for 1,2,3,n = …, 

then 

 ( ){ } ( ) ( ){ }2

0
0

1 2 3 1 3; ., ,
T x nT

n

F t e F x nT dx
λλ λ λ λ λ

∞
− +

=

= +∑∫U  (5.36) 

Proof We have from the definition of UT, 

 ( ){ } ( ) ( )
( )

2 2

1 2 3 1 3

1

0

1
0

3, ,;
n T

t t

nT
n

F t e F t dt e F t dtλ λλ λ λ λ λ λ λ
∞∞ +

− −

=

= = ∑∫ ∫U  

Put t x nT= +  so that, dt dx=  in the above equation to get the desired result.                                              ■   

 

Corollary 5.19 If 
3λ  is an integer then (5.36)  assumes the form 

 ( ){ } ( )2

2

1
1 2 3 3

0
, ,; .

1

T
x

T
F t e F dx

e
xλ

λ

λ
λ λ λ λ−

−
=

− ∫U  (5.37) 

Proof  When 
3

λ  is an integer then ( ){ } ( )3 3F x nT F xλ λ+ =  which renders (5.36) as 

 

( ){ } ( ) ( )

( ) ( ) ( )

2 2 2 2

2 2 2 2

2

1 2 3 1 3 1
0 0

0 0

2

0

3

0

1
1 3 3

, ,;

1 .
1

T T
nT x x nT

n n

T T
x T T x

T

F t e e F x dx e F x dx e

e F x dx e e e F x dx
e

λ λ λ λ

λ λ λ λ

λ

λ λ λ λ λ λ λ

λ
λ λ λ

∞ ∞
− − − −

= =

− − − −

−

 
= =  

 

= + + + =
−

…

∑ ∑∫ ∫

∫ ∫

U

 

                                                                                                                                                                                ■   
5.13 Initial value Theorem of UT 
Theorem 5.20  

 ( ) ( ) ( ){ }
20

1 1 3
0

2 1 2 3lim lim lim ; ., ,
t t

F t F t F t
λ

λ λ λ λ λ λ λ
→ → →∞

= = U  (5.38) 

Proof From (5.28) we have   

 ( ){ } ( ){ } ( )1 2 3 1 2 3
2 1

3 3

, , , ,' ; ; 0 .F t F t F
λ λ

λ λ λ λ λ λ
λ λ

= −U U  

Taking limits of the above expression as 
2

λ → ∞ gives 

 ( ){ } ( ) ( ){ } ( )
2

2

2 2

2 1
3

0
1 2 3 1 1 2 3

3 3

lim , , lim lim ,' ; ' ; 0 .,tF t e F t dt F t Fλ

λ λ λ

λ λ
λ λ λ λ λ λ λ λ

λ λ→∞ →∞

∞
−

→∞
= = −∫U U  

Or, 
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 ( ){ } ( )
2

1 2 3
2 1

3 3

0 ;lim , , 0 .F t F
λ

λ λ
λ λ λ

λ λ→∞
= −U  

From where (5.38) at once follows keeping in mind that ( ) ( ) ( )
0 0

30 lim lim .
t t

F F t F tλ
→ →

= =                                                                   

                                                                                                                                                                                ■  
5.14 Final Value Theorem of UT 
Theorem 5.21  

 ( ) ( ){ }
2 0

1 3 2 1 2 3lim lim ; ., ,
t

F t F t
λ

λ λ λ λ λ λ
→∞ →

= U  (5.39) 

Proof  We recall (5.28) 

 ( ){ } ( ){ } ( )1 2 3 1 2 3
2 1

3 3

, , , ,' ; ; 0 .F t F t F
λ λ

λ λ λ λ λ λ
λ λ

= −U U  

On proceeding to the limits of the above equation as 
2

0λ →  we get 

 ( ){ } ( ) ( ){ } ( )
2

2

2 2

2 1
3

0
1 2 3 1 1 2 3

0 0
3

0
3

' ; ' ;lim , , lim lim , , 0 .tF t e F t dt F t Fλ

λ λ λ

λ λ
λ λ λ λ λ λ λ λ

λ λ→

∞

→ →

−= = −∫U U  

Or 

 

( ) ( ) ( ){ } ( )

( ) ( ){ } ( )

2

2

2

2

2 1
1 1 2 3

0 0

1 1

3
0

3 3

2 1
3

0
3

2 3
0

3

' ;lim lim , ,

lim

0

' ; 0 ., ,

te F t dt F t F

F t dt F t F

λ

λ λ

λ

λ λ
λ λ λ λ λ

λ λ

λ λ
λ λ λ λ λ

λ λ

∞
−

→ →

→

∞

= −

⇒ = −

∫

∫

U

U

 

Or 

 
( )

( ){ } ( )
2

1 1 2 3
0

3 2 1

3 3 30

lim ,; 0 .,

t

F t
F t F

λ

λ λ λ
λ λ λ λ

λ λ λ

∞

=
→

 
= − 

 
U  

Or 

 ( ) ( ) ( ){ } ( )
2

1 21
1 2 3

0

1
3

3 3 3 3

lilim 0 ; 0 .m , ,
t

F t F F t F
λ

λ λ λ λ
λ λ λ λ

λ λ λ λ→→∞
− = −U  

The required result is now evident.                                                                                                                       ■  

 

 
5.15 UT of UT of a Function  
Theorem 5.22 

 ( ){ }{ } ( )' ' ' 3

1 2 3

'

1 2 3 11 ' '0
2 3

; ; , ,, , .
F t

F t dt
t

λ
λ λ λ λ λ λ λ λ

λ λ

∞

=
+∫U U  (5.40) 

Proof 

The definition (2.3) of UT of a function ( )F t  with respect to the parameters 
1 2

'

3 3, ,λ λ λ λ  gives 

 ( ){ } ( ) ( )2

1 3
0

2 3 1 2 3 1, , , ,; tF t e F t dtλλ λ λ λ λ λ λ λ
∞

−= = ∫U u  

On taking the UT of the above equation again with respect to the parameters 
' ' '

1 2 3, ,λ λ λ  we obtain 

 

( ){ }{ } ( )

( ) ( )2 2

'
2 2

' '' '
3 32 2 2 2

' ' '

1 2 3 1 2 3 2

1 3 2

' '

1 2 3 1 3
0

' '

1 1
0 0 0 0

1 3 2

, , ,;

.

,; , ,

t t

F t e d

e e F t dt d e e F t dt d

λ λ

λ λ λ λλ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ

∞
−

∞ ∞ ∞ ∞
− −− −   = =

     

=



∫

∫ ∫ ∫ ∫

U U u

 

As the area (region) of  integration in this double integral is the whole of the positive quadrant of the 
2

tλ −  

plane, on interchanging the order of integration of these independent variables we have 

 ( ){ }{ } ( ) ( )' '
2 3 2' ' '

1 2 3 1

'

1 2 3 1 3 2
0 0

,; ;, , , .
t

F t F t dt e d
λ λ λ

λ λ λ λ λ λ λ λ λ λ
∞ ∞ − +

=  
  ∫ ∫U U  
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The desired result now follows at once by evaluating the integral inside the square brackets on the right hand 

side of the last equation.                                                                                                                                         ■  

 

5.16 Convolution Theorem of UT 

Definition 5.23 The convolution or faltung of two functions ( )F t  and ( )G t is defined by (see, for example, 

[6, (11), p.45] 

 ( ) ( ) ( ) ( ) ( )
0 0

*H F a G a da F a G a da F G
µ µ

µ µ µ= − = − =∫ ∫  (5.41) 

 

Theorem 5.24 Let ( )F t  and ( )G t  be two functions such that ( ){ } ( )1 2 3 1 1 2 3, , , ,;F t λ λ λ λ λ λ=U u  and 

( ){ } ( )1 2 3 2 1 2 3, , , ,;G t λ λ λ λ λ λ=U u  then the UT of their convolution *H F G=  is given by 

 { } { } ( ) ( )3
1 2 3 1 2 3 1 1 2 3 1 2 32

1

, , ,; , , , ,* ; , .H F G
λ

λ λ λ λ λ λ λ λ λ λ λ λ
λ

⋅= =U U u u  (5.42) 

Proof Consider the right hand side of (5.42) 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

2 2

2

2 3 3
0

1 1 2 3 1 2 3
0

2

1 3 3
0

1

0

1

.

, , , , t p

t p

e F t dt e G p dp

e F t G p dtdp

λ λ

λ

λ λ λ λ λ λ λ λ λ λ

λ λ λ

∞ ∞
− −

∞ ∞ − +

⋅ = ⋅

=

∫ ∫

∫ ∫

u u
 (5.43) 

where the double integral is taken over the entire first quadrant of the t p−  plane bounded by the axes 0t =  

and 0.p =  On making the change of variables p q=  and t r p r q= − = −  which transforms the original 

axes 0t =  and 0p =  of the t p−  plane into the lines 0q =  and q r=  respectively in the new q r−  

plane (see also, [7, (3.5.5), p. 158 and Fig. (3.3), p. 159]). Thus the new limits of integration in the above double 

integral (5.43) are 0q =  to q r=  for the q −  variable and 0r =  to r = ∞  for the r −  variable and the 

Jacobian for the change of variables ( ) ( ), ,p t q r→ is 

 
( )
( )

1 1,
.

0 1,

t t

r qt p
dtdp drdq drdq drdq drdq

p pr q

r q

∂ ∂

−∂ ∂∂
= = = =

∂ ∂∂

∂ ∂

 

Thus the double integral (5.43) takes the form 

 ( ) ( ) ( )( ) ( )22

1 1 2 3 12 2 3 1 3 3
0 0

, , , ,
r

r

r q
e F r q G q drdq

λλ λ λ λ λ λ λ λ λ
∞

−

= =
⋅ = −∫ ∫u u  

Or, ( ) ( ) ( ) ( )2

2

2

1
1 1 2 3 1 2 3 3 3 3 3

0 0
3

, , , ,
r

r

r q
e dr F r q G q dqλλ λ λ λ λ λ

λ
λ λ λ λ

λ

∞
−

= =
⋅ = − ⋅∫ ∫u u  (5.44) 

Note that as ( )0,q r∈  the variable, ( )3 30,q rλ λ∈  thus setting 
3v qλ= renders (5.44) with the help of 

(5.41) as 

 ( ) ( ) ( ) ( )
3

2

2

1
1 1 2 3 1 2 3 3

0 0
3

2, , , ,
r

r

r v
e dr F r v G v dv

λ
λλ λ λ λ λ λ

λ
λ

λ

∞
−

= =

 ⋅ = −
  ∫ ∫u u  

i.e., 

 ( ) ( ) { }2

2

1 1
1 1 2 3 1 2 3 1 2 32

0
3 3

, , , , * * ,; ,r

r
e F Gd Fr Gλλ λ λ λ λ λ λ λ λ

λ

λ

λ

λ∞
−

=
⋅ = =∫ Uu u        

                                                                                                                                                                                ■  

Corollary 5.25 If 
13 2 3
* *H F F F=   then (5.42) gives 

{ } ( ){ } { } ( ){ }3
3 1 2 3 1 2 3 1 2 3 1 1 2 3 2 3 1 3

1

2; , , , , ,* * ; ; * ;, , ,H F F F F F F
λ

λ λ λ λ λ λ λ λ λ λ λ λ
λ

= =U U U U  
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λ

λ λ λ λ λ λ λ λ λ
λ

 
=  
 

U U U

If 
1 2
* * *

k k
FH FF …=  then (5.42) on repeated use yields 

 { } { }
1

3
1 2 3 1 2
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i

k
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λ

λ λ λ λ λ λ
λ
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=

 
=  
 

∏U U  (5.45) 

 

5.17 UT of Partial Derivatives of Functions 

Theorem 5.26 If ( ),Y Y x t= and   ( ){ } ( )1 2 3 1 2 3, ; , , ; , ,Y x t Y xλ λ λ λ λ λ=U  and    

( ) ( )( )
0

,0 ,
t

t x Y x t
t

Y
=

∂ 
=  ∂ 

then 

(i) ( )( ) ( ) ( )2
1 2 3 1 2 3

1

3 3

, ; , , ; , , ,0 .Y x t Y x Y x
t

λ λ
λ λ λ λ λ λ

λ λ

∂ 
= − 

∂ 
U  (5.46) 

  

(ii) ( )( ) ( ) ( ) ( )1 2 1

2

2
2

2
1 2 3 1 2 32

33 3

, ; , , ; , , ,0 ,0 .tY x t Y x Y x Y x
t

λ λ λ λ
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λ λ λ

  ∂
= − −   

∂   
U  (5.47) 

(iii) ( )( ) ( )( )1 2 3 1 2 3, ; , , ; , , .Y x t Y x
x

d

dx
λ λ λ λ λ λ

∂ 
= 

∂ 
U  (5.48) 

(iv) ( )( ) ( )( )
2 2

1 2 3 1 2 32 2
, ; , , ; , , .

d
Y x t Y x

t dx
λ λ λ λ λ λ

 ∂
= 

∂ 
U  (5.49) 

Proof (i) Using the definition of UT, we get   
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which on simplification gives (5.46). 

(ii) Let ( ) ( ){ } ( ), , , .tV x t Y x t Y x t
t

∂
= =

∂
 Now, 
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The second equality of the above expression follows from the use of  (5.46). Proceeding further we have, 
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   Using (5.46) again for the value of the expression ( )( ) 1 2 3, ; , ,Y x t
t

λ λ λ
∂ 

 
∂ 

U  in the above equation leads 

to (5.47) after a little simplification. 
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(iii) 

( )( ) ( )( ) ( )

( ){ } ( )( )

2 2

1 2 3 11 3
0 0

3

1 2 3 1 2 3

, ; , , , ,

, ; , , ; , , .

t td
e e Y

dx

d d

Y x t Y x t dt x t dt
x x

Y x t Y x
dx dx

λ λλ λ λ λ λ λ λ

λ λ λ λ λ λ

∞ ∞
− − 

 
∂ ∂ 

= = 
∂ ∂  

  =



= 


∫ ∫U

U

 

(iv) We note that ( )( ) ( )( )
2

2
, ,Y x t Z x t

x x
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∂
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(5.48) we obtain 

 

( )( ) ( ) ( ){ }

( )( ) ( )( ) ( )( )

2

1 2 32

2

1 2 3 1 2 3 1 2 32

, , , ; , ,

, ; , , ; , , ; , , .

d d
Y x t Z x t Z x t

x dx dx

d d d d
Y x t Y x Y x

dx x dx dx dx

λ λ λ

λ λ λ λ λ λ λ λ λ

 ∂
  = =     ∂ 

 ∂    
= = =    ∂    

U U

U

 

                                                                                                                                                                                ■  
 

6. THE n − DIMENSIONAL GENERALIZATION OF THE UPADHYAYA TRANSFORM   

Sometimes the problems arising in physical sciences and engineering are also solved by the two dimensional 

analogue of the Laplace transform, often called the double Laplace transform (see, for instance. Patra [8, section 

4.6, pp.161-165], or,  Debnath and Bhatta [7, section 4.11, p. 274-280 and Exercises 59-62, pp.294-295]).  

Therefore, to cover such cases and many other possible fields of the future applications of the Upadhyaya 

transform we now present a generalization of the one- dimensional Upadhyaya transform defined by (2.3). 
  

Analogous to (2.1) we define the complex parameters 
( ) ( ) ( )

1 2 3, ,
j j jλ λ λ  by the relations 
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 (6.1) 

where, , ,1,j n= …  
( )
i

j
m  and 

( )
i

j
r  are nonnegative integers ( )1,2 ,6,i = …  and 

( ) ( ) ( ) ( ) ( ) ( )
, , , , ,

i i i i i i

j j j j j j
a b c d k l  are complex constants.  To tackle the situation at hand, we can also choose the 

parameters 
( ) ( ) ( )

21 3
, ,

j j jλ λ λ  and the constants 
( ) ( ) ( ) ( ) ( ) ( ), , , , ,
i i i i i i

j j j j j j
a b c d k l  to be real numbers also.  

Now we define the n − dimensional Upadhyaya transform of a function ( )1, , nF t t…  of n − variables 

1, , nt t…  as below. We assume that the function ( )1, , nF t t…  is of exponential order ( )0a a >  for each of 

the n − variables 
1
, ,

n
t t… . 

 

Definition 6.1 The n − dimensional Upadhyaya transform of a function ( )1, , nF t t…  of n − variables 

1
, ,

n
t t… , which is of exponential order ( )0a a >  for each of the n − variables 

1
, ,

n
t t…  is denoted by 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
2 3 21 1 3

1 1 1
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n n
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n
F t t λ λ λ λ λ λ… …U  and defined  by 
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(6.2) 
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provided the integral exists. The symbol ( )
0 0

n
∞ ∞

… …∫ ∫ in the above equation means that the integral sign 

0

∞

∫ appears n  times in this equation corresponding to the n  variables of integration 
1, , nt t… . It is also to be 

noted that the subscript n  attached with U , (i.e., the symbol 
n
U ) signifies the n − dimensional UT of the 

function ( )1, , nF t t… .   

 We remark that (6.2) generalizes or will generalize a number of multidimensional variants of the Laplace 

transform which either currently exist in the literature or are yet unknown and may appear in the future. We 

mention below some special cases of (6.2) with which the author is aware of at present. 

 

6.1 The Multivariable Laplace Transform    

If ( )1, , nF t t…  be a function of n  positive variables then the multivariable Laplace transform (i.e. the n −  

dimensional Laplace transform) of ( )1, , nF t t…  is defined by (see [54, (2.5.2), p.47])  
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 (6.3) 

If in (6.2) we  choose 
( ) ( )

31
1

j jλ λ= =  and 
( )
2 j

j
pλ =  for , ,1j n= …  then it reduces to (6.3) and we can 

easily observe that 
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As far as this author knows till date the special case of (6.3) when 2n =  has been studied so far by some 

authors and it is called the Double Laplace Transform. For the interested reader we refer to the instances as are 

pointed out at the beginning of this section of the paper. Still the double Laplace transform does not seem to be 

studied as extensively as its counterpart the classical Laplace transform and the various variants thereof all 

corresponding to the one-dimensional case. One more relevant reference in this direction is the very recent work 
of Aylikçi and Dernek [53]. These authors also highlight this fact by pointing out that: “But there is a very little 

work available for the double Laplace transform of ( ),f x y  of two positive real variables x  and y and their 

properties” (see, [53, p. 2 of 21]). Given these facts, now we proceed to study the special case 2n =  of (6.2) in 

some detail. Consistent with the modish terminology in the literature, we call the 2n =  case of (6.2) the 

Double Upadhyaya Transform (DUT) and define it as below: 

 

Definition 6.2 The Double Upadhyaya Transform (DUT) of a function ( )1 2,F t t  of two variables 1 2,t t , which 

is of exponential order ( )0a a >  for each of the variables 
1 2
,t t  is denoted by 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
2 3 2 31 1

1 1 1 2 2 2
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and is defined by 
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 (6.4) 

whenever this double integral exists.  

 

6.2 The Double Laplace Transform  

Now we observe the double Laplace transform, which is the special case of (6.3) when 2n = . Therefore, the 

following equation defines the double Laplace transform of a function ( )1 2,F t t  of two variables 
1 2
,t t , which 

is of exponential order ( )0a a >  for each of the variables 
1 2
,t t  
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 ( ){ } ( ) ( )1 2 21

2 2 2 2 2 2 21 1 1 1 1
0 0

, , , ,; .
t p t p

F t p ft p p F t dp e t dtt
∞

− −
∞

= = ∫∫L  (6.5) 

provided, of course, the double integral in question converges. In this context we refer the reader to Patra [8, 

(4.25), p.161] or, Debnath and Bhatta [7, (4.11.1), p.274]  or, Aylikçi and Dernek [53, (1.5), p.2 of 21]. It can be 

very easily discerned that (6.4) reduces to (6.5) when we put 
( ) ( ) ( ) ( )

11 3 3

1 2 1 2
1λ λ λ λ= = = =  and 

( )
2 1

1
,pλ =  

( )
2 2

2
pλ =  thereby at once showing that 

 ( ){ } { } ( ){ } ( )2 2 2 2 21 1 2 1 2 1 1 2 12 2;1, ,1;1, ,1 1, ,1;1, ,1 ; ., , , ,F t p pt t pF t p pp p p f= ==uU L  

 
6.3 The Iterated Laplace Transform 
This Laplace transform is a particular case of the double Laplace transform of a function of two variables in 

which the transformation variables are equal (see Patra [8, section 4.7, p.166]). The iterated Laplace transform is 

defined by (see Patra [8, (4.46), p.166]) 
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p t t

I F t p F t p p f p p e F t dtt t t dt
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L  (6.6) 

where the symbol I
L

 denotes the iterated Laplace transform. For the setting of the parameters 

( ) ( ) ( ) ( )
11 3 3

1 2 1 2
1λ λ λ λ= = = =  and 

( ) ( )
2 2

1 2
pλ λ= =  in (6.4) we obtain (6.6) from it to see that 

( ){ } { } ( ){ } ( ){ } ( )2 2 2 21 1212 2;1, ,1;1, ,1 1, ,1;1, ,1 ; .,;, , , ,F t p p p p I F t p F t p f pt t t p p= = = =u
L

U L  

   

6.4 The Double 
22

−L  Integral Transform of Aylikçi and Dernek      

 Very recently  in  2018 Aylikçi and Dernek [53]  have defined the 
22−L  integral transform which extends the 

2 −L  integral transform of  Yürekli and Sadek [52].  For a function ( ),f x y  of two variables x  and y  the 

double Lapalce – type transform 
22

−L is defined in the positive quadrant of the xy − plane by the double 

integral (see [53, (2.1), p. 3 of 21]) 
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0
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∞ ∞
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whenever the integral exists. A comparison between (6.4) and (6.7) shows that the choice of the parameters 
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3 3 2 21 1

1 2 1 2 2 21 21
, 1, ,

2
p qλ λ λ λ λ λ= = = = = =  and the choice of the variables 

2 2

1 2,t x t y= =  with 

the following definition of the function ( )1 2,F t t , 
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leads us to (6.7). Thus we see the following relation 
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6.5 The Double Integral Transform of Atangana and  Alkaltani 

A new double integral transform was introduced recently by Atangana and  Alkaltani [55] as below: 

For a function ( ),f x t  which is continuous and its Laplace transform is n  times and m  times partially 

differentiable, the new integral transform of Atangana and Alkaltani is defined by  (see [55, (2.1), p. 425]) 

 ( ){ } ( ) ( ) ( ),
0 0

., , ,,; n m

n m AA

sx pt
K f x t s p e f x t dxdp t ts x

− +∞ ∞

== ∫ ∫F  (6.8) 

Here the subscript AA  attached to the symbol F  signifies the words Atangana and  Alkaltani. On setting the 

variables 
1 2

,xt t t= =  and by observing that from (6.5) the double Laplace transform of the function  

( ) ( ) ( )21 ,, ,F t F xt t f x t= =  is given by  



 Introducing the Upadhyaya Integral Transform 

 

498 

 
Bulletin of Pure and Applied Sciences  

Vol. 38E (Math & Stat.) No.1 / January- June 2019 

 

 ( ){ } ( ) ( )2 2
0 0

, ; , ,, sx ptf x t e fs p f s p x t dxdt
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which, on differentiating partially n  times with respect to s  and m  times with respect to p  yields  
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and now utilizing the relation between the double Upadhyaya transform and the double Laplace transform from 

the subsection 6.2 above we can rewrite (6.10) as 
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 (6.11) 

which shows the relation between a special case of the double Upadhyaya transform (6.4) and the double 

integral transform of  Atangana and  Alkaltani [55] given by (6.8).  

 

6.6 The Double Aboodh Transform 
Aboodh et al. [56,57] have introduced the double Aboodh transform in the literature  defined as (see, [56, 

section 1.1, p.48213]) below: 

For a function ( )1 2,F t t  of positive real variables 
1 2
,t t which is capable of being expressible as a convergent 

infinite series, the double Aboodh transform is given by 
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Comparing (6.4) and (6.12) shows that for the choice of the parameters 
( ) ( ) ( ) ( )

1 1 3 3

1 2 1 21 1
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u v
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and 
( ) ( )
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,u vλ λ= =   in (6.4) it reduces to (6.12), thereby yielding the relation 
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6.7  The Double Mahgoub Transform (in fact, the Double Laplace-Carson Transform) 
Thangavelu et al. [58] have used the double Mahgoub transform (which, in fact, is nothing but the double 

Lapalce-Carson transform (see, subsections 4.2 and 4.10 above)) which is defined by them in Definition 1.2 

p. 16 (see [58]) as under: 

For a function ( )1 2,F t t  of positive real variables 
1 2
,t t which can be written as a convergent infinite series, the 

double Mahgoub transform  (i.e., truly speaking, the double Laplace-Carson transform) is given by 
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,u v  being complex variables.       

 A straightforward comparison between  (6.4) and (6.13) with the choice of parameters 
( ) ( )

1 1

1 2
, ,u vλ λ= =  

( ) ( ) ( ) ( )
2 2 3 3

1 2 1 2
, , 1u vλ λ λ λ= = = =  in   (6.4) at once lends (6.13) to show that 

 ( ){ } { } ( ){ } ( )2 21 2 1 2 22 ; , ,1; , ,1 , ,1; , ,1 , ;, , , .tF t u u v v u u v v M F t t u v H u v= = =uU  

 

6.8 The Double Elzaki Transform 
Elzaki and Hilal [59] used the double Elzaki transform to solve the telegraph equation. A few other works using 

the double Elzaki transform are [60, 61].  In [59] the double Elzaki transform is defined by the relation 

 ( ){ } ( ) ( )
1 2

2 1 2 2 1 2 1 2
0 0

; ,, ,,

t t

u vE F t u v T u v uv e F t dtt t dt

 
− +∞ ∞  
 = = ∫ ∫  (6.14) 

for complex values of ,u v , where ( )1 2,F t t  is a function of the positive variables 
1 2
,t t  which possesses 

convergent infinite series expansion (see [59, (1-4), p. 96]). From (6.4) we observe that for the choice of the  
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parameters 
( ) ( ) ( ) ( ) ( ) ( )
1 1 2 2 3 3

1 2 1 2 1 21 1
, , , , 1u v

u v
λ λ λ λ λ λ= = = = = =  in it, we obtain (6.14) from it to have the 

relation 

 ( ) ( ){ } ( )1 22 2 2 1 2 2

1 1 1 1
; , ,1; , ,1 , ,1; , ,1 ; , ., , ,F t u v u v E F t u v T u v

v
t

u v u
t

   
= = =   

   
uU  

 

6.9 The Double Kashuri and Fundo Transform 

Kashuri and Fundo [62] defined this double transform as below: 

For a function ( )1 2,F t t  is a function of the positive variables 
1 2
,t t  which has a convergent infinite series 

expansion 

 ( ) ( ) ( )
1 2
2 2

2 1 2 2 1 2 1 2
0 0

; , .
1

, , ,

t t

u vt u v e F t t dt dt
uv

F t u v

 
− +∞ ∞  
 ==   ∫ ∫kK  (6.15) 

We can at once deduce from (6.4) that for the setting of the parameters 
( ) ( ) ( )

1 1 2

1 2 1

2

1 1 1
, , ,

u v u
λ λ λ= = =  

( ) ( ) ( )
2 3 3

2 1 2

2

1
, 1

v
λ λ λ= = =  in it we arrive at (6.15) thus showing that 

 ( ) ( ) ( )2 2 22 2 2 1 221 2 2

1 1 1 1 1 1 1 1
; , ,1; , ,1 , ,1; , , ; , .1, , ,F t F t u v
u u v v

t t u v
u u v v

   
= = =      

   
u kU K  

 
 6.10 The Double Sumudu Transform        
Watugala [63] introduced the double Sumudu transform in 2002.  Some other studies involving the double 

Sumudu transform are [64, 65, 66]. The double Sumudu transform is defined in Tchuenche  and Mbare [64] for 

a function ( )1 2,F t t  of the positive variables 
1 2,t t , which is capable of being expanded in a convergent infinite 

series, by the relation (see [64, (2.1), p.33]) 

 ( ){ } { } ( )
1 2

2 1 2 2 1 2
0

1 2
0

1
; , ,, .,

t t

u vt t dF t u v u v e F t dt
uv

t

 
− +∞ ∞  
 = = ∫ ∫SS  (6.16) 

We can see that if in (6.4)  we set parameters 
( ) ( ) ( ) ( ) ( ) ( )

2 2 31 1 3

1 2 1 2 1 21 1 1 1
, , , , 1

u v u v
λ λ λ λ λ λ= = = = = =  we get 

(6.16) to see the relation 

 ( ) ( ){ } { }1 2 1 2 22 2 2

1 1 1 1 1 1 1 1
; , ,1; , ,1 , ,1; , ,1 ; , ,, , .F t F t u v u v
u u v v u u

t t
v v

   
= = =   

   
SuU S  

 
6.11 The Double Natural Transform 
Kiliçman and Omran [67] have introduced the double Natural transform and studied its relation with the double 

Laplace and the double Sumudu transforms and applied it to solve partial integro-differential equations. They 

define the double Natural transform for a ( )1 2,F t t  of the positive variables 1 2,t t  as (see, [67, (3.1), p. 1746]) 

 ( ) ( ) ( ){ } ( ) ( ) ( ) ( )1 22 2

1 2 1 2 1 2
0 0

, ; , ; , , ; , .,
st pt

F t t s p u v R s p u v e F ut vt dt dt
∞ ∞ − +

+ += =   ∫ ∫ℕ  (6.17) 

From (6.4) we can conclude that with the choice of the parameters 
( ) ( ) ( ) ( )

1 1 2 2

1 2 1 2
1, 1, , ,s pλ λ λ λ= = = =    

( ) ( )
3 3

1 2
,u vλ λ= =  in it we at once get (6.17) to see the relation 

( ){ } { } ( ) ( ) ( ){ } ( ) ( )2 2

1 1 22 2 2
;1, , ;1, , 1, , ;1, , ; , ; , , ; , ., ,t F t t sF t s u p v s p u v R s p up v vu + += = =   ℕuU  

 
6.12 The Double Ramadan Group Integral Transform 

Mohamed A. Ramadan and Adel R. Hadhoud [76] introduced the Double Ramadan Group Integral Transform in 

2018 as an extension to their earlier work [36]. According to them (see [76, p. 389]), for the function ( ),F x t  

belonging to the set A  defined by  
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 ( ) ( ) ( )
2

1

2

2, 0,, :   , , , 1,2  if ,i

x t

A F x t M F x t iMe x t
ττ τ

+

+

  
= ∃ = 
 

> ≤ ∈


ℝ  

the Double Ramadan Group Integral Transform of ( ),F x t   in the  positive quadrant of the x t−  plane is 

defined by 

 ( ) ( ) ( ) ( )
0 0

2

1
, : , , , , , , ,

sx pt

u vRG F x t s p u v K s p u v e F x t dxdt
uv

 
− +∞ ∞  
 = =   ∫ ∫  (6.18) 

(see, [76, (1), p. 390]) where, , ,s p u  and v  are complex variables, s  and p  are the transform variables for x  

and t  respectively, and ( )1 2, ,u v τ τ−∈  where, 1 2, 0τ τ >  and ( ) ( )Re 0,Re 0s p> > .  

We can now at once infer from (6.4) that for the choice of the parameters 
( ) ( ) ( )

1 1 2

1 2 11 1
, , ,

s

u v u
λ λ λ= = =  

( ) ( ) ( )
2 3 3

2 1 2
, 1, 1

p

v
λ λ λ= = =   in it and by setting the variables 

1 2,xt t t= =   in it we obtain (6.18) thereby 

establishing the relation 

( ) ( ) ( ) ( )2 2 2

1 1 1 1
; , ,1; , ,1 , ,1; , ,1 , : , , , , ,, .,

s p s p
F RG F x t s p u v K s p u v

u u v v u u v v
x t

   
= = =      

   
uU  

We also remark that for the choice of variables 
1 2,

x t
t t

u v
= =  in (6.17), it reduces immediately to (6.18) 

showing thereby that the Double Ramadan Group Integral Transform of Ramadan and Hadhoud [76] which 
was introduced in 2018 is exactly identical with the Double Natural Transform of Kiliçman and Omran [67] 

which appeared one year earlier in the literature i.e., in 2017. 

 

We also find it important to point out to the interested reader that some triple integral transforms of the Laplace 

type as far as known till date to this author are also available in the literature. With this thing in mind we are 

therefore inclined to explicitly define the special case of (6.2)  corresponding to the case 3n =  and in 

conformity with the ongoing pattern of the literature we call it the Triple Upadhyaya Transform (TUT).   

 

Definition 6.3 The Triple Upadhyaya Transform (TUT) of a function ( )1 2 3, ,tF t t  of three variables 
1 2 3,,t t t , 

which is of exponential order ( )0a a >  for each of the variables 
1 2 3,,t t t  is denoted by 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
1 2 3 2 3 21 1 3

1 1 1 2 2 2 3 3 3

3 1 32, ; , , ;, , , ; , ,F t t t λ λ λ λ λ λ λ λ λU  

and is defined by 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( )
( ) ( ) ( )( ) ( ) ( ) ( )( )

1 1 1

1 1 1

1 1 1

2 3 2 3 2 3

2 3 2 3 2 3

1 2 3
1 2 32 2 2

3 3 3

1 1 1 2 2 2 3 3 3

3 2

1 1 1 2 2

1 3

2 3 3 3

3

1 2 3 1 2 3

1 1 32 3 2
0 0 0

, ; , , ; , , ; , ,

, , ; , , ; , ,

,

,

, .
t t t

F t t

e F t t t dt dt t

t

d
λ λ λ

λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ
∞ ∞ ∞ − + +

=

= ∫ ∫ ∫

u

U

 (6.19) 

whenever this triple integral exists.  

 

6.13 The Triple Laplace Transform  
Atangana [68] introduced the triple Laplace transform in 2013 and solved the Mboctara equations  which are 

third order differential equations, using it. If ( )1 2 3, ,tF t t  be a continuous function of three variables then its 

triple Laplace transform is defined as (see, [68, (1), p. 1 of 10] 

 ( ){ } ( ) ( ) ( )1 2 3

3 1 2 3 3 1 2 3 1 2 3
0 0 0

, , , ,, ; , , ,
pt st kt

F t t p s k F t t dt dt dtt f p s k e t
∞ ∞ ∞ − + +

= = ∫ ∫ ∫L  (6.20) 

One more relevant reference using the triple Laplace transform is the work of Khan et al. [69] in which the two 

dimensional fractional order homogeneous heat equation is solved by them. We see that (6.20) is a special case 

of the triple Upadhyaya transform (TUT) (6.19) for the choice of parameters  
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

3 31 1 1 3 2 2 2

1 2 3 1 2 3 1 2 3
1 , , ,p s kλ λ λ λ λ λ λ λ λ= = = = = = = = =  

in it which shows the expected relation between these two transforms 

( ){ } { } ( ){ } ( )3 21 3 1 2 33 3 3, ;1, ,1;1, ,1;1, ,1 1, ,1;1, ,1;1, ,1 ,, ; , ,, , , .tF t t p s k p s k F t t p st fk p s k== =uU L  

 

6.14 The Triple Elzaki Transform   
Elzaki and Mousa [70] very recently introduced the triple Elzaki transform and studied its convergence 

properties and applied it to solve the Volterra integro-partial differential equation. For a function ( )1 2 3, ,tF t t  

of three positive variables 
1 2 3,,t t t  which is expressible as a convergent infinite series, the triple Elzaki 

transform is defined by 

 ( ) ( ){ } ( ) ( )
321

3 1 2 3 3 1 2 3 1 3
0 0

2
0

, ,, ; , , , , ,

tt t

s
t tE F t t s T s s e F t t dd dt tt

ρ δρ δ ρ δ ρ δ

 
− + + ∞ ∞ ∞
 = = ∫ ∫ ∫  (6.21) 

provided the integral is convergent. A comparison between (6.19) and (6.21) shows that for the choice of 

parameters 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 21 1 2 3 31 3

1 2 3 1 2 3 1 2 31 1 1
, , , , , , 1s

s
λ λρ δ

ρ
λ λ λ λ

δ
λ λ λ= = = = = = = = =  in (6.19) 

reduces it to (6.21) to show that 

 
( )

( ) ( ){ } ( )

1 3

3

3

1 2 3

2 3

3

1 1 1 1 1 1
, ; , ,1; , ,1; , ,1 , ,1; , ,1; , ,1

, ; , , , ,

,

.,

F t t s s
s s

E F t t T s

t

st

ρ δ ρ δ
ρ δ ρ δ

ρ δ ρ δ

   
=   

   

= =

U u
 

6.15 The Quadruple Laplace Transform 
The quadruple Laplace transform was recently introduced by Rehman et al. [74]. In their work [74] they prove 

some properties of this transform and solve some homogeneous and non-homogeneous partial differential 

equations involving four variables. They define the quadruple Laplace transform for a continuous function 

( ), , ,F w x y z  of four positive , , ,w x y z  by the relation (see, [74, (2.1), p. 3374]) 

 

( ){ } ( )

( ) ( )

4 4

0 0 0 0

, , , ; , , , , , ,

, , ,
pw qx ry sz

F w x y z p q r s p q r s

e F w x y z dwdx ydz

f

d
∞ ∞ ∞ ∞ − + + +

=

= ∫ ∫ ∫ ∫

L

 (6.22) 

We mention that (6.22) is a special case of (6.2) when 4n =  in it and for the choice of parameters 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

3 3 3 31 1 1 21 2 2 2

1 2 3 4 1 2 3 4 1 2 3 4
1 , , , ,p q r sλ λ λ λ λ λ λ λ λ λ λ λ= = = = = = = = = = = =  

and the variables 
1 2 3 4

, , ,w tt x t y t z= = = =  to show that (as expected) 

 
( ){ } { }

( ){ } ( )

4 4

4 3

, , , ;1, ,1;1, ,1;1, ,1;1, ,1 1, ,1;1, ,1

,

;1, ,1;1

, ,

, ,1

, , , ; , , .,

F w x y z p q r s p q r s

F w x y z p q r s f p q r s=

=

=

uU

L

 

 

7. THE DEGENERATE UPADHYAYA TRANSFORM  
We record that the degenerate Laplace transform was introduced recently by Kim and Kim [9] in 2017. They 

defined the degenerate exponential function 
teµ  as a function of two variables µ  and t , where, ( )0,µ ∈ ∞ , 

t ∈ℝ , which is defined by (see, [9, (1.3), p. 241]) 

 ( )
1

1
t

e t µ
µ µ= +  (7.1) 

This degenerate exponential function generalizes the classical exponential function 
te  defined by the infinite 

series expansion 

0 !

n
t

n

t
e

n

∞

=

=∑   and buy observing that 

 ( )
1

0 0
0

lim lim 1
!

n
t t

n

t
e t e

n
µ

µ
µ µ

µ
∞

→ + → +
=

= + = =∑  (7.2) 
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On the basis of this degenerate exponential function, Kim and Kim [9] defined the degenerate Laplace 

transform of a function ( )F t  be a function defined for 0t ≥ and  for ( )0,µ ∈ ∞  by the relation (see [9, (3.1), 

p.244]) 

 ( ){ } ( ) ( ) ( )
0

; 1
s

F t s f s t F t dtµ
µ µ µ

−∞

= = +∫L  (7.3) 

Kim and Kim [9] developed the theory of the degenerate Laplace transform to some extent in their work [9]. 

This work of Kim and Kim was extended by the present author in a series of four papers [10-13]. Corresponding 

to this work of Kim and Kim we also define a degenerate version of the Upadhyaya transform here and 

analogously call it the degenerate Upadhyaya transform (DUT)  for a function ( )F t  of a positive variable t  

and  for ( )0,µ ∈ ∞ as follows:    

 ( ){ } ( ) ( ) ( )
2

1 2 3 2 31 1 3
0

; , , , , 1D DF t F t dtt
λ

µ
µ µ λ µ λλ λ λ λ λ λ

−∞

= += ∫U u  (7.4) 

provided the integral converges, where, the superscript D  in the symbols 
D

µU  or  
D

µu  signifies the degenerate 

nature of the UT  in (7.4). 

We can observe that in the limiting case when 0µ →  in (7.3) and (7.4) they respectively give the usual 

Laplace transform and the Upadhyaya transform (2.3) respectively. We also see that the degenerate  Laplace 

transform (7.3) of Kim and Kim [9] is a special case of the  degenerate Upadhyaya transform (7.4) because for 

the choice of parameters 
21 3

1, , 1sλ λ λ= = =  in  (7.4) it reduces to  (7.3) thus showing that 

 ( ){ } ( ) ( ){ } ( );1, ,1 1, ,1 ; .
D DF t s s F t s f sµ µ µ µ== =U Lu  

 Similarly corresponding to the n − dimensional Upadhyaya Transform of (6.2) we define the n-Dimensional 

Degenerate Upadhyaya Transform (n-DDUT) for a function ( )1, , nF t t…  of n  positive variables 
1, , nt t…  

and  for ( )0,µ ∈ ∞ by the relation 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ } ( )
( ) ( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( )
( )

( ) ( )( )

2 3 2 3 2 3 2 3

2

3

1 1 1

3

1

1

1 1 1 1 1 1

1

0 0
1

1

1

1

1

, ; , , ; , , ,, ; ;

,

, ; , ,

1 .,

i

n n n n n n

n n

n n
i n

D D

n

i n n

i i

t

n

F t

Ft dt t t td

µ

µ

λ

µ
λ λ λ λ λ λ λ λ λ λ λ λ

λ µ λ λ
−∞ ∞

= =

… … …

…

=

 
= … … …+  

 
∏ ∏∫ ∫

U u

(7.5) 

whenever the integral converges. We can at once see that in the limit as 0µ →  (7.5) reduces to (6.2). 

 

8. THE MODIFIED DEGENERATE UPADHYAYA TRANSFORM    
 
Very recently in the month of October 2018 Kim et al. [71] introduced the modified degenerate Laplace 

transform for a function ( )F t  defined for 0t ≥  and for ( )0,µ ∈ ∞  defined as follows ( see [71, (26), p. 4 of 

8]) 

 ( ){ } ( ) ( ) ( )* *

0
; 1 .

t

F t s f s s F t dtµ
µ µ µ

−∞

= = +∫L  (8.1) 

Corresponding to this we define the Modified Degenerate Upadhyaya Transform (MDUT) for a function ( )F t  

defined for 0t ≥  and for ( )0,µ ∈ ∞  by the relation 

 ( ){ } ( ) ( ) ( )2 3 2

* *

1 2 331 1
0

; , , ., , 1D D
t

F t dt tF µ
µ µλ λ λ λ λ λ λ λµ λ

−∞

== +∫U u  (8.2) 

if the integral converges. We can at once notice that in the limit as 0µ →  then (8.1) and (8.2) reduce to the 

Laplace transform  and the Upadhyaya transform (2.3) respectively. We also see it easily that for the choice of 

parameters 21 31, , 1sλ λ λ= = =  in (8.2)  it reduces to (8.1) thereby showing that the modified degenerate 

Laplace transform of Kim et al. [71] is a special case of the modified degenerate Upadhyaya transform and the 

relation between the two is 

 ( ){ } ( ) ( ){ } ( )* * * *
;1, ,1 1, ,1 ; .

D DF t s s F t s f sµ µ µ µ= ==U Lu  
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In a similar fashion corresponding to the n − dimensional Upadhyaya Transform of (6.2) we define the n-

Dimensional Modified Degenerate Upadhyaya Transform (n-DMDUT) for a function ( )1, , nF t t…  of n  

positive variables 
1
, ,

n
t t…  and  for ( )0,µ ∈ ∞ by the relation 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ } ( )
( ) ( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( )( ) ( ) ( )( )

1 1 12 3 2 3 2 3 2 3

3 3

1

1

1 1 1* *

1

1 1 1

1

0
1 1

12
0

1

; , , ; , , , , ; , ,, , ; ;

, ,1 .
i

n n n n n n

n n

n

D D

n

n
i i n

t

i i

n n

F t

F t dtdn t

t

t

µ µ

µλ

λ λ λ λ λ λ λ λ λ λ λ λ

λ µ λ λ
−

∞ ∞

= =

… … …

… …

=

 
= +   …


…


∏ ∏∫ ∫

U u

(8.3) 

provided the integral converges. It is obvious that as we take the limit 0µ →  (8.3) reduces to (6.2).   

 

9. THE UPADHYAYA TRANSFORM OF REAL MATRIX ARGUMENTS  
 

The functions of matrix arguments find vital applications in statistics, probability, astrophysics, etc. Till date the 

monograph by Mathai [14] is the most comprehensive and consolidated reference work available on this subject. 

The author’s doctoral dissertation [15] also presents a comprehensive study of multiple hypergeometric 

functions of matrix arguments. We consider, in this section, only the ( )p p×  real symmetric positive definite 

matrices, i.e. all the matrices appearing in this section of the paper are real symmetric positive definite matrices. 

Referring to Mathai [14, Definition 5.2, p.255]  we consider a function ( )F X  which is a scalar function of  a 

real symmetric positive definite matrix X  of order ( )p p×  and a  matrix 
ppijT t

×
 =     of parameters  whose 

diagonal elements are , 1, ,jj jt p= …  and the non-diagonal elements are 
1

, , ,, 1,
2

jkt j k p j k= … ≠  which 

satisfy the condition , ,jk kjt t j k∀= , then for such matrices ,X T  the trace of the product matrix TX  or XT  

is given by (see, [14, (5.1.6), p. 255] 

 ( ) ( )tr tr .jk jk

kj

TX XT t x
≥

= =∑  (9.1) 

Then we define the Laplace transform of the function ( )F X of real (symmetric positive definite) matrix 

argument by the relation (see Mathai [14, (5.1.7), p.255]) 

 ( ) ( ) ( ) ( )tr

0

TX

F F
X

T f T e F X dX
−

>
= = ∫L  (9.2) 

where, ( )tr A  denotes the trace of the matrix A , 0X >  shows that the matrix X  is positive definite and the 

symbol 
0X >∫ shows that the integration is carried out over the set of all positive definite matrices X  and  

0X >  means that the matrix X  is positive definite. Whenever the integral in (9.2) exists it is called the 

matrix argument Laplace transform of the function ( )F X .    With the same choice of the matrices 
2

,X Λ  as 

above  and the conditions imposed  on the matrix 
2

Λ  are the same as those imposed above on the matrix T , we 

define the Upadhyaya Transform of Real (Symmetric Positive Definite) Matrix Arguments (UTRSPDMA) by the 

equation 

 ( ){ } ( ) ( ) ( )2

2 2

1 1
2 2

1 2 3 1 2 3

tr

3
0

1; , ,, ,
X

X
F X e F X X dX

− Λ

Λ Λ >
Λ Λ Λ = Λ Λ Λ Λ= Λ∫uU  (9.3) 

provided the integral exists. It may be mentioned here that the function ( )3F XΛ  in (9.3) is symmetric in the 

sense ( ) ( ) ( ) ( )
1 1 1 1

2 2 2

3

2

33 3 3F X F X F X X F XΛ = Λ Λ = Λ = Λ  (see Mathai [14, section 6.1.3, p. 367], for 

a more detailed discussion regarding the symmetry of the function of matrix argument we refer the reader to 

Mathai [72,  p. 515 and (1.7), p. 516]), 
1 2 3

,,Λ Λ Λ  are all real symmetric positive definite matrices of order 

( )p p×  and 
1

2X  denotes the real symmetric positive definite square root of the matrix X  and X denotes 

the determinant of the matrix X .   
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   We mention that (9.3) is the matrix generalization of (2.3) for the case of functions of real symmetric positive 

definite matrix arguments. When in (9.3) we choose 
1 3pIΛ = = Λ , (

pI  being the identity matrix of order p ) 

and 
2 TΛ = , it reduces to (9.2) thus showing that 

 ( ){ } ( ) ( ) ( )
2

,, .; , ,
T p p p p F F

F X I T I I TT fI TΛ = == uU L  

 

10. THE UPADHYAYA TRANSFORM OF COMPLEX MATRIX ARGUMENTS 
 
 For defining the Upadhyaya Transform of Complex Hermitian Positive Definite Matrix Arguments  

(UTCHPDMA) we assume that all the matrices appearing in this section of the paper are ( )p p×  complex 

Hermitian positive definite matrices. For the theory of the functions of complex Hermitian positive definite 

matrix arguments we refer the reader to the Chapter 6 of Mathai [14] and we use the same notations in this 

section of the paper to denote the complex matrices as are used by Mathai  in the Chapter 6 of his book [14] (see 
also section 4, pp. 213-215 of [73]). Following Mathai [14, Chapter 6, pp.361-362] we consider a  

( )p p× complex Hermitian matrix Xɶ  of  functionally independent variables. We assume that 

1 2X iX X= +ɶ , where 
1 2,X X  are real matrices such that 

11

'X X=  and 
'

2 2X X= −  , (
*X X=ɶ ɶ ). Further 

we consider a ( )p p×  complex Hermitian matrix Tɶ  of  parameters such that 
1 2T iT T= +ɶ , 

1 2,T T  being real 

matrices such that 
11

'T T=  and 
'

2 2T T= −  (
*T T=ɶ ɶ ) then it can be shown that (see Mathai [14, (6.1.4) p. 361]) 

 ( ) ( ) ( )1 1 2 2

*tr tr trT X T X XT= +ɶ ɶ  (10.1) 

Further if we assume that ( )*

1 2jk jk pp
iTT t Tη

×
 = = +

ɶ ɶ  where, 1,jk j kη = =  and 
1

,
2

jk j kη = ≠  and 

* *,T T X X= =ɶ ɶ ɶ ɶ   it follows that (see Mathai [14, (6.1.5), p. 362]) 

 ( )
1

*

1 1 1 1 2 2tr jj jj j

p

j j

k jk jk jk

k j k

X x xt t xT t
= > >

= + +∑ ∑ ∑ɶ ɶ  (10.2) 

where ( ) ( ) ( ) ( )1 1 2 1 12 2 2, , ,jk jk jk jkT t T t X x X x= = = =  (see, Matahi [14, p. 361]) . With this background, 

the Laplace transform of complex Hermitian positive definite matrix argument Xɶ  is defined as follows (see 

Mathai [14, Definition 6.7, (6.1.6), p. 362]) for a function ( )F Xɶ , which is a real valued scalar function of Xɶ :  

For positive definite Hermitain matrices Tɶ  and Xɶ  of order ( )p p×  and the restrictions on  Tɶ  as stated 

above, the Laplace transform of a  real valued scalar function ( )F Xɶ  is defined by, 

 ( ) ( ) ( ) ( )
*

*

tr

0

T X

F F
X X

T f T e F X dX
 −
 

= >
= = ∫

ɶ ɶ

ɶ ɶ

ɶ ɶ ɶ ɶL  (10.3) 

whenever the integral exists. 

Corresponding to this, we define the Upadhyaya Transform of Complex Hermitian Positive Definite Matrix 

Arguments (UTCHPDMA) for three ( )p p× complex Hermitian positive definite matrices 
1 2 3, ,Λ Λ Λɶ ɶ ɶ  of 

parameters, a function ( )F Xɶ , which is a real valued scalar function of the complex Hermitian positive definite 

matrix Xɶ  of order ( )p p×  as below 

 ( ){ } ( ) ( ) ( ) ( )
*

1 12

2

2

2

2

*1 2 3 1 2 1
0

tr

3 3; , , , t, de
X

X X
F X e F X X dX

 −

Λ >


Λ =

Λ
Λ Λ Λ Λ Λ Λ = Λ= Λ∫ɶ ɶ ɶ ɶ

ɶ ɶ

ɶ ɶ ɶɶ ɶ ɶ ɶ ɶ ɶɶ ɶ ɶuU (10.4) 

provided the integral exists and in which ( )1det Λɶ  represents the absolute value of the determinant of the 

matrix 1Λɶ .  It is pertinent to record here that (10.4) is the matrix generalization of (2.3) for the case of functions 

of  Hermitain positive definite matrix arguments. When we choose 1 3 2,pI TΛ = = Λ Λ =ɶ ɶ ɶ ɶ  in (10.4) it reduces 

to (10.3) hence establishing that 
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 ( ){ } ( ) ( ) ( )
2

, , .; , ,p p p p F FT
I IF X T I T I T f T

Λ
= = =ɶ ɶ

ɶ ɶ ɶɶ ɶuU L  

 

We also mention here that we can also define the basic extensions ( q − analogues) of the one-dimensional and 

n − dimensional Upadhyaya transforms, which we may call the Basic One- Dimensional Upadhyaya Transform 

(BODUT) and the Basic n −  Dimensional Upadhyaya Transform (BnDUT) respectively, for  (2.3) and (6.2)  

on similar lines by using the notations  and methods of the q − calculus given in the classical work of Gasper 

and Rahman [75] by using the q − exponential functions ( )qe z  and ( )qE z  defined respectively in (1.3.15), 

p. 10 and (1.3.16), p. 11 of Gasper and Rahman [75] by the following equations in the usual notations of the 
theory of the basic hypergeometric series: 

 ( ) ( )
( ) ( )1 0

0

1
0; ; , , 1

; ;

n

q

n n

z
e z q z z

q q z q
φ

∞

= ∞

= − = = <∑  (10.5) 

and     

 ( ) ( )
( )

( )
( )

1 /2

0 0

0

; ; , ;
;

n n

n n

n

q

q
E z q z z z q

q q
φ

−∞

∞
=

== − − − = −∑  (10.6) 

Similarly by using the concepts of  fractional calculus the Fractional Upadhyaya Transforms of one and 

n − dimensions respectively can be defined for (2.3) and (6.2). It is to be noted that the Theorem 5.11,  

equations (5.31), (5.32) and the Theorem 5.26 open the gateway of applications of the Upadhyaya Transform 

(UT) for solving the initial value problems and the boundary value problems involving the ordinary and partial 

differential coefficients arising most frequently in applied mathematics, physics, engineering and other allied 

areas of study like biomathematics, biophysics, etc. We foresee that all the areas of research  and possibly many 

more than we can think of at present, wherever the Laplace transform and its above mentioned extant variants 

are being currently applied for finding the solutions of the problems arising there, the Upadhyaya transform will 

be used most extensively in the coming years and the results developed in this paper and the various 

generalizations of the Upadhyaya transform pointed out here will be developed by us and other researchers 

around the world and all these proposed works will find the maximum possible applications in the coming years. 

With this highly optimistic vision about the future scope of this work we conclude the paper and also remark 

that our future communications will  focus on these subjects and various other possible applications and the 
author most humbly invites all the respected readers and researchers worldwide to extend this work, generalize 

it and apply it as extensively as possible so that together we all the researchers of the worldwide mathematics 

community make the Upadhyaya Transform an everlasting tool in the mathematical arena, a powerful tool 

whose potential powers of applications are yet to be expounded by all of us!    
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