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Abstract:

Through this introductory paper we announce to the worldwide mathematics community a new type of
integral transform, which we call the Upadhyaya Integral Transform or, the Upadhyaya transform (UT), in
short. The new transform which we propose to proclaim through this paper, is, in fact a generalized form of
the celebrated Laplace transform. The power of this generalization is that this most general form of the
Laplace transform generalizes and unifies, besides the classical Laplace transform and the Laplace-Carson
transform, most of the very recently introduced integral transforms of this category like, the Sumudu
transform, the Elzaki transform, the Kashuri and Fundo transform, the Mahgoub transform, the ZZ-
transform, the Sadik transform, the Kamal transform, the Natural transform, the Mohand transform, the
Aboodh transform, the Ramadan Group transform, the Shehu transform, the Sawi transform, the Tarig
transform, the Yang transform, etc. We develop the general theory of the Upadhyaya transform in a way
which exactly parallels the existing theory of the classical Laplace transform and also provide a number of
possible generalizations of this transform and thus we prepare a firm ground for future researches in this
field by employing this most generalized, versatile and robust form of the classical Laplace transform — the
Upadhyaya transform — in almost all the areas wherever, the classical Laplace transform and its various
aforementioned variants are currently being employed for solving the vast multitude of problems arising in
the areas of applied mathematics, mathematical physics and engineering sciences and other possible fields
of study inside and outside the realm of mathematics.
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1. INTRODUCTION

The celebrated Laplace transform was introduced by the French mathematician and physicist Pierre Simon
Laplace (1749-1827). This classical integral transform together with another celebrated transform the Fourier
transform (due to Joseph Fourier (1768-1830)) forms the foundation stone of Operational Calculus, a branch
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of mathematics which has very powerful applications not only in applied mathematics but also in other branches
of science like physics, electrical and mechanical engineering, astronomy, heat transfer, etc. The integral
transforms play a pivotal role in finding the solutions of the initial value problems and the initial-boundary
value problems which are frequently encountered in engineering sciences. Ever since the British electrical
engineer Oliver Heaviside (1850 —1925) first used the Laplace transform to solve ordinary differential equations
encountered by him in his study of electrical circuits, the subject of integral transforms caught sight of
mathematicians and researchers and continues to be a hot field of mathematical research even today. The utility
of the operational calculus methods which solely rest upon the foundation pillars of integral transforms needs
no introduction given the undisputed fact that these methods have found vast applications in the fields of
ordinary and partial differential equations, integral equations, calculus of finite differences, problems in
probability and statistics, the fractional integrals and fractional derivatives. It is well known that the Laplace
transform is a special case of the celebrated Fourier transform in the sense that it can be derived from the latter
for a special class of exponentially decaying functions which are restricted in their definition to the positive part
of the real axis. The Laplace transform of many functions including the elementary functions and higher
transcendental functions have been calculated and tabulated in a number of authoritative standard works of
mathematics, a few of them are [1 — 5]. The theory of the classical Laplace transform can be found in numerous
works. We only mention three here, just only for the sake of reference [6,7,8]. The books mentioned in [7,8] are
very recent contributions to existing vast literature on the subject. Many extensions of the classical Laplace
transform have also appeared in the literature. One very recent extension is the study of Kim and Kim [9], called
the degenerate Laplace transform. Their study was extended by this author in a series of very recent papers [10-
13]. We may also mention that the classical Laplace transform in terms of real symmetric positive definite
matrices and complex Hermitian positive definite matrices can be found in the work of Mathai [14] and in some
references mentioned therein. This book of Mathai also contains Laplace type integrals for many
hypergeometric functions of matrix arguments with real positive definite matrices and Hermitian positive
definite matrices as arguments. The author’s doctoral dissertation [15] also contains Laplace type integrals for
many multiple hypergeometric functions of matrix arguments which are proved by using the Mathai’s matrix
transform technique as discussed by Mathai in [14]. In developing these results, the results for the Laplace
transforms of the hypergeometric functions of one and more scalar variables have played a crucial role. Thus,
in short, we emphasize here that the utility of the classical Laplace transform in mathematics remains much
more even today after about two centuries when they were first employed as effective tools for solving problems
arising in applied mathematics, physics and engineering (see, [7], p.1). This underlines the need of continuous
research in this field and enhancement of our existing knowledge about this celebrated integral transform.

In this paper we proclaim a new generalization of the classical Laplace Transform which we call the Upadhyaya
Integral Transform or the Upadhyaya Transform (UT) for brevity. This generalization is a powerful and
versatile generalization and unification of almost all the variants of the classical Laplace transform that are
extant in the current mathematical research literature. We mention that the Upadhyaya transform, which we
introduce in this paper includes the classical Laplace transform, the Laplace — Carson transform, the Sumudu
transform and most of the very recently introduced variants of the classical Laplace transform, namely, the
Elzaki transform, the Kashuri and Fundo transform, the Mahgoub transform, the ZZ — transform, the Sadik
transform, the Kamal transform, the Natural transform, the Mohand transform, the Aboodh transform, the
Ramadan Group transform, the Shehu transform, the Sawi transform, the Tarig transform and the Yang
transform. The scheme of the paper is as follows: in the first section of the paper we give the definition of the
classical Laplace transform as our preliminary definition. In the second section of the paper we state our
definition of the Upadhyaya transform. In the third section of the paper we provide the mathematical basis for
the Upadhyaya transform and thus give the complex inversion formula for the Upadhyaya transform. In the
fourth section we show how the different variants of the classical Laplace transforms as mentioned above are
special cases of the Upadhyaya transform. In the fifth section we develop the theory of the Upadhyaya
transform parallel to the existing theory of the Laplace transform and also calculate the Upadhyaya transforms
of some frequently used elementary functions. The sixth section is devoted to the 7 — dimensional
generalization of the Upadhyaya transform and we point out some special cases of this generalization there,
which currently exist in the literature. The seventh section provides the degenerate extension, while the eighth
section provides the modified degenerate extension of the Upadhyaya transform. The matrix generalization of
the Upadhyaya transform to the cases of real symmetric positive definite matrix arguments and the Hermitian
positive definite matrix arguments are discussed respectively in the ninth and tenth sections of the paper.

1.1 Preliminary Definitions
Definition 1.1: Functions of Exponential Order: (see, for example, [7, p. 150]) A function F () is said to

be of exponential order @(>0) on 0 <t < oo if there exists a positive constant K such that for all ¢ > T

472 Bulletin of Pure and Applied Sciences
Vol. 38E (Math & Stat.) No.1/January- June 2019




Lalit Mohan Upadhyaya

|F(t)|$Ke“’. (1.1)
Definition 1.2: The Laplace transform: (see, for example, [6, (1), p.1]). Let F' (t) be a real valued function
defined on (—oo,00) such that F(7)=0Vs<0. The Laplace transform of F (), represented by
[,{F (t)} , is defined by

L{F(t);s}=f(s)=[ e F(t)dt (1.2)

where, the parameter s is a real or complex number and £ denotes the Laplace transform operator. Originally
Laplace used this transform around 1780’s while working in probability theory [26] (see also, [27] and [28]).

2. THE UPADHYAYA INTEGRAL TRANSFORM (or, THE UPADHYAYA TRANSFORM)

For the sake of most general situations, we first define three complex parameters ﬂl , ﬂz , /13 as below:

i M B i s s
] (5] [
21 — i=0 ,ﬂz _ =0 ’23 _ \i=0 (21)

[rzzbizéj . {idizflj {rzﬁlizéj

i=0 i=0 i=0

where, m. and 7, are nonnegative integers (i=1,2,...,6) and a,.,b,.,c,.,d,.,k,.,li are complex constants.
Depending upon the situation at hand, we can also choose the parameters /7.1,).2,/13 and the constants

a,b.,c,,d. k.l to be real numbers also. The above choice of the parameters ensures the broadest form of

generalization of the classical Laplace transform so that it encompasses almost all the existing variants of the
Laplace transform that are currently in vogue in the mathematical research literature or may appear in the future.

Definition 2.1: The Upadhyaya Integral Transform: Suppose the real valued function F' (t) belongs to the
set of functions defined by

I1 ;
A:{F(t):EIM,nI and /or 77, > 0,|F (¢) <M, ifte (-1)’x[0,%0), j =1,2.} 2.2)

where, the constant M is finite while 77, and 77, may not exist simultaneously. We define the function

F (t ) such that F (t ) =0 for t <0. The Upadhyaya transform (UT) of the function F (t ) is defined as

ULF (1): 20, 20, A} =u (A, A, 2) = 4, [ e ™ F (At dt 23)

provided this integral converges and the parameters /7.1,).2,/13 are given by (2.1). Here, we call U the
Upadhyaya Transform Operator.

3. THEORETICAL BASIS OF THE UPADHYAYA TRANSFORM

It is well known that the celebrated Fourier integral formula simultaneously provided not only the definitions of
the Laplace transform as well as the inverse Laplace transform but also granted a method to evaluate the inverse
Laplace transform of a function by means of evaluating a complex contour integral by the use of the Cauchy’s
residue theorem and by suitably deforming the contour of integration in the complex plane. The Upadhyaya
transform being a generalized form of the Laplace transform, therefore, we venture now to provide a
mathematical basis for the Upadhyaya transform proclaimed above by us.

The Fourier integral formula for a function f, (x ) defined on —oo < x < oo is given by
(see [7, (3.2.1), p. 144])

fl(x):g :Oeik’“dkj.:e_ik’]‘l(t)dt. 3.1)
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If we choose in the above equation f1 (x) =0 in —,o<x<0 and put f1 (x) = e_”F(/%x) H (x), where,

C is a positive fixed number, ﬂg given by (2.1) and H (x ) is the Heaviside unit step function defined by (see,
[71, (2.3.8), p. 22 and (2.3.9), p.23)

H(x):{l’ x>0 (3.2)
0, x<0
and in the general form by
H(x—a)z{l’ x> (3.3)
0, x<a
for a fixed real number a. Now the Fourier integral formula (3.1) yields,
¢ F (Ax)H (x) = i [~ e ak]” e e F (Ar) H (1)dr (34

Applying the definition of H (x) from (3.2) in (3.4) gives

XBX — _J‘ (c+ik)x ko' —(C-Hk ﬂBI) (35)
We substitute ¢ + ik = A, (so that, idk =dA,, with i = \/j 1) then (3.5) renders

1 . d it
F(ﬂBx):ML_IW e* ﬂzj' A (At)dt (3.6)

Or, for the parameter /11 defined by (2.1), (3.6) can be rewritten as

1 N -
F(Ax)=——[""e*aa, [4 [FeHF(Ag) dt}
27r/7.‘ o
Noting that the expression within the square brackets of the last equation is the Upadhyaya transform

U{F(I);ﬂ‘,ﬂz,ﬂ}}z u(ﬂ‘,ﬂz,%) of the function F(I) ((2.3) above), we at once get the following

complex inversion formula for the Upadhyaya transform from the above equation as
Ctioo
=U{u(A, 4.4 }—2 g e u(A, A4, 4,)dA,. 3.7)

We call the operator {f " in the above equation the inverse Upadhyaya transform operator. It may be noted
from (3.7) that instead of recovering the original function F (x) from it we get the function F (/13)6) . This is
due to the fact that in the definition of the Upadhyaya transform the argument of the function is multiplied by
ﬂg. The original function F' (x ) can be easily recovered from the function F (/13)6) given by (3.7) by the

simple application of the transformation x — x/ /13 to it.

4. RELATION OF THE UPADHYAYA TRANSFORM TO THE LAPLACE TRANSFORM AND ITS
OTHER EXTANT VARIANTS

We now show how the Laplace transform and its other variants which are currently available in the research
literature of mathematics follow as the special cases of the Upadhyaya transform defined by (2.3) supra.

4.1 The Laplace transform
The classical Laplace transform defined by (1.2) can be easily seen to follow from (2.3) if we choose

/7.1 =1= /13 and ﬂ? = in (2.3). From (2.1) this can be achieved in many ways by suitably choosing the

values of the non-negative integers and the complex constants. The details being trivial we do not mention them
here. Thus we have,

U{F (1)L 5,1} =u(Ls,1)=L{F (1)} = £ (s)
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4.2 The Laplace — Carson transform
This transform is sometimes also referred to as the ‘s —multiplied’ form of the Laplace transform and it is
defined by

KLC{F(I);S}szC(s)zsIO e 'F(r)dr “.1)
for the same conditions as are mentioned with the definition of the Laplace transform in (1.2) above. The
subscript ‘L.C” attached to £ and f on the left hand side in (4.1) is used by us here to signify that it is the
Laplace — Carson transform of F (t ) (see [49], see also, [30, (1.5), p.168]). It is easy to infer from (2.3) that

for the choice of parameters /1‘ = ﬂz = and ﬂg =1 in it, we obtain (4.1) which gives us that

ULF (1);s,5,1} =u(s,s,1) = L, AF ()} = fic(5).

We find it worth mentioning here that the Laplace — Carson transform perhaps appeared in the mathematical
literature around 1948 as remarked by Elzaki et al. [16, p. 2]. Deakin [17] tells us that this transform was earlier
more preferred to the usual definition (1.2) of the Laplace transform than at the present times because this form
was more conveniently suited for working with ‘the Older Heaviside Operational Calculus’ by making a
reference to his work [18]. He also points out that by the time he wrote this letter (1995-1997) to the Editor of
the International Journal of Mathematical Education in Science and Technology the Laplace — Carson transform
retained ‘a considerable place in the Russian literature’ by referring to the work of Ditkin and Prudnikov [19]!

4.3 The Sumudu Transform
The Sumudu transform was introduced by Watugala [20] in 1993 to solve differential equations and some

problems in control engineering. It was defined for the functions F' (t ) belonging to the set A defined by (2.2)

as below:

L=
S{F(t);u}=S{u}= ;L e"F(t)dt, ue(-n.m,) (4.2)
In the literature it also appears in slightly another form as given below, which is obtained by rewriting (4.2) by
setting v =1/u to get
S{F(t);u}=S{u} = J‘:e‘VF(uv)dv, ue (-n,,1,) 4.3)

Soon after the above paper of Watugala [20], another paper by Weerakoon [21] followed where she applied the
Sumudu transform to solve partial differential equations. It can easily be inferred from (2.3) and (4.2) that when

we choose /1‘ = /12 = l and /7.3 =1 in (2.3) we obtain (4.2) thereby implying the relation
u
U{F(r);l,l,l} = u(l,l,lj =S{F(t);u}=S{u}.
u u u u

Similarly, the choice /11 = ﬂz =1 and ﬂg =u in (2.3) gives (4.3), thence implying that
U{F (¢);LLu}=u(LLu)=S{F(t);u}=S{u}.
Watugala [20] proclaimed that the Sumudu transform (4.2) introduced by him was a ‘new integral transform’.

But this claim of Watugala [20] was refuted by Deakin [17] who pointed out that the Sumudu transform defined
by (4.2) could be arrived at from the definition of the Laplace — Carson transform (4.1) ‘by means of the trivial

change of the variable’ s :l. He concluded that the Sumudu transform “is nothing other than a thinly
u
disguised form of the familiar Laplace transform. Indeed it already has some currency in this form [22, section
2.1]. All the properties demonstrated for the ‘Sumudu transform’ in [20, 21] may very readily be deduced from
the corresponding properties for the standard Laplace transform, and this is an exercise I leave to the reader”.
Deakin [17] also remarked that ‘“The origin of the name ‘Sumudu transform’ is nowhere given either in [20] or
[21], nor can I enlighten readers myself. (No author named Sumudu has ever been noticed by Mathematical
Reviews).” Similar comments are made by Al-Omari and Agarwal [23, p.17] where they write: “While we are in
agreement with most of the claims expounded by Watugala, the transform is not so new as proclaimed; the
Sumudu transform is connected to the §-multiplied Laplace transform. But, this, however, in no way
diminishes its importance or usefulness; Belgacem et al. (2003)” [24]. The present author would like to remark
here that over the past twenty six years the integral transform named Sumudu transform has been applied to
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study a wide variety of phenomenon by a number of different authors and it has gained wide acceptance in the
mathematical research literature and many research papers written on this topic and its applications have now
found place in the records of the world’s two topmost and the most prestigious research databases of
mathematics, viz. the Mathematical Reviews/MathSciNet of the American Mathematical Society, USA and the
zbMATH (formerly, Zentralblatt MATH), Germany of the European Mathematical Society, for both of whom
this author is a permanent reviewer. The author would like to mention here only just two papers, the reference
numbers [23] and [25], in this connection only for instance. In the light of this discussion and the
aforementioned remarks of the very respected learned authors of the reference nos. [17] and [23], as far as this
author is aware of at present, now, this author would like to share here his personal experience and motivation
for writing this paper. Most humbly he would like to inform the respected readers of this paper that the Founder
Editor-in-Chief and the current Managing Editor of this Journal, Prof. Dr. A.K. Sharma, who himself is also a
great teacher for this author as well as one of his greatest mentors, had entrusted the responsibility of reviewing
a manuscript for possible publication in this journal sometimes back. While going through that manuscript this
author was introduced for the first time to one of the variants of Laplace transform introduced recently by an
author whose results and definition were made use of in that manuscript. It was just out of curiosity that this
author chose to pursue the field of study that he was exposed to for the first time. This led to this author’s first
time introduction with the numerous other variants of the classical Laplace transform that have appeared in the
literature so far and are mentioned in the abstract of this paper. Having felt the need that all these various
varieties of new Laplace transforms can be suitably combined together and fused into a more compact form
which is a generalization of the classical Laplace transform, this author decided to introduce this most versatile
and robust generalization of the classical Laplace transform, which he prefers to call the Upadhyaya Integral
Transform, or the Upadhyaya Transform (UT) for brevity, in the memory of his late father Dr. Urba Datt
Upadhyaya, who being a teacher and researcher himself, had initiated this author into the study of mathematics
during this author’s early formative years and who had always encouraged and inspired this author to keep
contributing something new to this subject till he breathed his last in the year 2013. The only reason for this
disclosure is the inspiration drawn by this author from reading the work of the very learned and this author’s
very respected mathematician Prof. M.A.B. Deakin [17] of Monash University, Clayton, Australia and the very
learned and respected authors of the reference no. [23]. This author would also most humbly like to request the
respected readers of this paper that as they go through the details of the theory of the Upadhyaya transform as
developed in the next section of this paper, they will notice that all the results established here are parallel to the
corresponding results of the existing theory of the Laplace transform and the above quoted remarks of the
respected Prof. Deakin [17] in the context of the Sumudu transform of Watugala [20] may also apply very well
here and most of the respected readers and critics of this paper may naturally ask the question ‘Why, a new
integral transform with a new name is introduced whose kernel is essentially the same — the exponential
function — which is also the kernel of the classical Laplace transform? This author’s only humble response to
all such queries of the learned readers and critics of this paper is that this author is very much hopeful that in the
coming years the readers, the researchers from allied branches of study like applied physics, engineering and the
mathematicians worldwide would apply the results developed here to almost all the phenomena wherever the
various types of integral transforms mentioned in the abstract of this paper have been very fruitfully applied
during the recent years. It is only after going through the vast number of research papers that have appeared in
the topics concerning the various integral transforms as mentioned in the abstract and introductory section of
this paper, the present author decided to put forth this unification and generalization of all these integral
transforms as mentioned supra. Now, concluding these pertinent remarks, we proceed ahead to mention the
other integral transforms which follow as the special cases of the Upadhyaya transform.

4.4 The Natural Transform
The Natural transform was introduced by Khan and Khan [29] in 2008. For the functions F (t ) belonging to

the set A defined by (2.2) the natural transform is defined by (see also, [29, (1), p.127])

N[F(t)H (t);s.u|=N"[F(t):s5.u]=R"(s,u) = J‘:e“”F(ut)dt, (u,5)e (-1,,1,) @4
(see, [31, (3.2), p.80] and [30, (3), p.4]). A simple comparison between (2.3) and (4.4) leads us to the conclusion
that the choice /11 = 1,]2 =sand ﬂg =u in (2.3) gives (4.4) and we thus have

U{F (1)L, s,u}=u(Ls,u)=N" [F(t);s,u] =R"(s,u).

4.5 The Elzaki Transform
This transform was introduced in 2011 by Elzaki [32]. For the functions F (t) belonging to the set A defined

by (2.2) the Elzaki transform is defined by (see [32, (2), p. 57])
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E[F(t);v]=T(v)=vJ.(:°e_’/"F(t)dt, ve (n,1m,) 4.5)
By using the change of variable # = vu in (4.5), it may also be rewritten as (see, [16, (2-2), p.2])
E[F(t);v]=T(v)=vzjome_[F(vt)dt, ve (n,,1,) (4.6)

1
With the choice /11 =v, ﬂz =— and /7.3 =11in (2.3) we get (4.5) thereby implying that
v

L{{F(t);v,%,l}z u(v,%,lj: E[F(t)w]=T(v).

Similarly, the choice of /7.1 = vz,ﬂ? =1 and /13 =vin (2.3) we arrive at (4.6) which is suggestive of the
relation

U{F (1):v* Lo} =u(v’ Lv) = E[ F(t):v ]=T(v).

4.6 The Aboodh Transform
K.S. Aboodh [33] introduced this transform in 2013. For the functions F (t ) belonging to the set A defined in

(2.2) the Aboodh transform is defined by (see [33, (2), p.36])

L=
A[F(t);v]:K(v):;J'o e "F(1)dt, n,<v<n, 4.7)

1
If we put /1‘ = —,/12 =V and /13 =1in (2.3) we at once arrive at (4.7) thus implying the relation
1%

L{{F(t);l,v,l}z uG,v,ljz A[F(t)v]=K(v).

1%

4.7 The Kashuri and Fundo Transform

This transform was also introduced in the year 2013 by Kashuri and Fundo [34]. For a function F (t )
belonging to the set A defined by (2.2) the Kashuri and Fundo transform is defined by
1 < v?
K[F(l);v]:?(v):;jo e F(t)dt, ve(-n.mn,). 4.8)
I
where, |F (l‘)| <Me”", j=1,2 (see [28, (6), p. 6] and [27, (2.11), p. 266]). A plain comparison of (2.3) with

. 1 1 . .
(4.8) shows that the choice of /1‘ =—, /12 == and ﬂg =1in (2.3) leads us to (4.8) thereby showing that
% 1%

11 11

M{F(t);—,—z,l} _ u(—,—z,lj K[F():v]=E(v).
Vv Vv

4.8 The ZZ Transform

The ZZ transform was introduced in 2016 by Zain Ul Abadin Zafar [35]. For the function F (t ) in the set A

defined by (2.2) the ZZ transform is defined by (see [35, (1), p. 1605])

H[F(t);u,s]:Z(u,s)zsjl:e_‘"F(ut)dt. 4.9)

We can at once observe that for the choice of /7.1 = S,ﬂ? =s and /13 =uin (2.3) gives (4.9) thus giving us the

relation
ULF (1);s,s,u}=u(s,s,u) = H[ F(t);u,s |=Z(u,s).
4.9 The Ramadan Group Transform
The Ramadan Group Transform was introduced in 2016 by Raslan et al. [36]. For the functions F(¢) belonging

to the set A defined by (2.2) the Ramadan Group Transform is defined by (see [27, (2.16), p. 267])

477 Bulletin of Pure and Applied Sciences
Vol. 38E (Math & Stat.) No.1/January- June 2019




Introducing the Upadhyaya Integral Transform

RG[F(t)iv.s|=U(v.5)= J.:e_‘"F(vt)dt, ve (n,.17,). (4.10)
We see that the choice of /7.1 = 1,12 =5 and /13 =vin (2.3) leads us to (4.10) thus establishing that
ULF (1):1,5,v} = u(L,s,v) = RG[ F(1);v,s |=U (v,s).
It is pertinent to mention here that the Ramadan Group transform is exactly the same as the Natural transform

introduced in 2008 (see also [28, p.9]).

4.10 The Mahgoub Transform (in fact, The Laplace-Carson Transform)
This transform was introduced in 2016 by Mahgoub [37]. For the functions F (t ) belonging to the set A
defined by (2.2) the Mahgoub transform is defined by (see, [37, (2), p. 392])

M [F(t);v] = H(v) = vJ‘:e_WF(t)dt, ve [771,772]. 4.11)

We remark here that the Mahgoub transform is not at all a new transform but it is exactly the same as the
Laplace —Carson transform mentioned in the subsection 4 (see, (4.1), perhaps the learned author was not aware

of the Laplace-Carson transform). As in the case of the Laplace- Carson transform, by setting /11 = v,ﬂz =y

and /13 =1in (2.3), we can at once obtain (4.11) which shows that

U{F (t);v,v.1}=u(v,0,1) :M[F(t);v] =H(v).

4.11 The Kamal Transform
A.K.H. Seedeg [38] introduced the Kamal transform in 2016. For the functions F (t) belonging to the set A
defined by (2.2) the Kamal transform is defined by (see, [38, (2), p. 452])

K[F(t);v] =G(v)= J.:e_”"F(t)dt, ve [m.1,]. 4.12)
The choice of the parameters /1‘ = 1,/?2 = l and /13 =1in (2.3) gives us (4.12) thus establishing that
1%

u{F(t);l,l,l}z u(l,%,lj =K[F(t):v]=G(v).

1%

4.12 The Mohand Transform
M.M.A. Mahgoub [39] introduced this transform in 2017, while in 2016 he had introduced the Mahgoub (in
fact, he had reintroduced only the earlier well — known version of the Laplace-Carson transform) transform [37].

For the functions F (t) belonging to the set A defined by (2.2) the Mohand transform is defined by (see, [39,
(2), p. 114])

M [F(t);v] =R(v)= vzj‘:e_”F(t)dt, ve [n,.m] (4.13)
We can see that the parameters ﬂl = vz,ﬂz =V and ﬂg =11in (2.3) generates (4.13), to prove that

U{F (1)v’ v 1} =u(v’ 1) =M [F(1):v]=R(v).
We mention here that for setting the value of the parameter /7.1 in (2.1) equal to V> we can also have a choice
m=1=my,z =v,a,=lay=a,=a,=a,=...=a, =0 and b =1,b,=0 (i=1,...,1) besides
other possible choices also. The reader would now be able to see that how our expressions for defining the

parameters /7.1 , ﬂ?, /13 in (2.1) are justified for giving the definition of the Upadhyaya transform in (2.3) so that

it generalizes the Laplace transform of one variable defined by (1.2) in the broadest possible sense.

4.13 The Tarig Transform
The Tarig transform was introduced by T.M. Elzaki and S.M. Elzaki [40-42] in 2011. For the functions F' (t )

belonging to the set A defined by (2.2) the Tarig transform is defined by (see, [41, (1), p. 3230] and [43, (1), p.
13982])
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T[F(t);u]:El[u]:ljme_””zF(t)dt, u#0 (4.14)
u 0
For the choice of the parameters /1‘ = l, /12 = Lz and /13 =1in (2.3) generates (4.13), to prove that
u u
u{F(I);l,%,l}zu(l,%,l)zT[F(r);ujzEl [u].
u u u u

1
We can also see that for the choice of the parameter /12 equal to —- in the Tarig transform we can see from
u

(2.1) that the choice m,=m, =l,c,=1,c,=0=L...,), z,=u,d,=1ld,=d, =
1
d,=d,=...= dr4 =0. Similarly, we can argue for the choice of the parameter ﬂl equal to ; in the Tarig

transform by setting the values of the various constants and other quantities involved in (2.1). There can also be
other choices for the values of the various constants and quantities in (2.1) to achieve these desired values of /7.1
and /12 for the Tarig transform. Our aim for this discussion here is only to highlight the importance of (2.1)
where the parameters /7.1,/12 and /7.3 are defined in such a manner which ensures that our definition (2.3)

includes almost all the known and yet unknown variants of the classical Laplace transform defined by (1.2).

4.14 The Sadik Transform
The Sadik transform was defined in 2018 by S.A. Shaikh [44]. For the functions F (t ) belonging to the set A
defined by (2.2) the Sadik transform is defined by (see, [44, (1), p. 101])

1 hed o
La _ o _ —tv
S[F(t)v.B]=F(v ’ﬂ)_vﬂ [Te F(t)ar (.15)
where, V is a complex variable, & is any nonzero real number and [ is any real number. We can see that the
1
choice of the parameters /7.‘ = —ﬂ,ﬂz =v% and /13 =11in (2.3) gives us (4.15) to show that
1%

u{F(r);viﬂ,v",l}z u(viﬂ,v“,ljz S|F(t):v".8]=F (v, B).

As remarked in the case of the Tarig and Mohand transforms above, we can see that we can suitably choose the
values of the various constants and other quantities in (2.1) to obtain the desired values of the parameters

/7.1,).2 ,/13 so that (4.15) becomes a special case of (2.3). When ¢ in (4.15) becomes any nonzero real number
(i.e. other than a positive integer) we can remove the restriction that #1,is a nonnegative integer. In that case we
can say that m, = in (2.1) is any nonzero real number (positive, negative, rational or irrational, as the case
may be) and can take in it z, =v,c, =Lc¢,=c, =c; =..=¢, =0,m,=1,d,=1d, ZO(i =1,...,r4)t0

make /12 =v“. Similar suitable choices of the constants and other quantities involved in (2.1) can be made to
. 1
give /11 =—.
NG

4.15 The Yang Transform
The Yang transform was introduced in 2016 by X.-J. Yang [45]. For the functions F' (I) belonging to the set

A defined by (2.2) the Yang transform is defined by (see, [45, (6), p. S640])
Y[ F(t);@]=@[@]=] e F(t)dt (4.16)

1
We can easily see that the choice /7.‘ = 1,/12 =— and ﬂg =1 for the parameters in (2.3) leads us to (4.16)
)

thereby showing that
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L{{F(t);l,%,l} = u(l,%,lj =Y[F(t):m |=2[m].

4.16 The Shehu Transform
This transform was introduced very recently in this year itself (2019) by Shehu Maitama and Weidong Zhao

[30]. For the functions F' (t ) belonging to the set A defined by (2.2) the Shehu transform is defined by (see,
[30, (2.1), p. 170])

G[F(t);s,MJZV(s,u)zJ.:e_‘”/”F(t)dt 4.17)

S
It is easy to discern that the choice /7.‘ = 1,/12 =— and ﬂg =1 for the parameters in (2.3) produces (4.17) to
u

give the relation
u{F(t);l,i,l} = u(l,i,lj =&[ F(t);s.u]=V (s,u).
u u

4.17 The Sawi Transform
Mahgoub [46], who had earlier introduced the Mahgoub transform and the Mohand transform as discussed

above, introduced this transform in this very year, i.e. 2019. For the functions F (t ) belonging to the set A
defined by (2.2) the Sawi transform is defined by (see, [46, (2), p. 81])

1 ¢~ _p
S[F(t);v]:R(v):¥J.0 " F(t)dt, te[n,m,] (4.18)

It may be quickly noted that the Sawi transform introduced in 2019 turns out to be a special case of the Sadik
transform introduced in 2018, as (4.18) follows from (4.15) for ﬁ =2 and @ =-1. A simple inspection tells

. 1 1 .
us that the choice /7.‘ ==, /12 =— and ﬂ.3 =1 for the parameters in (2.3) produces (4.18) to show that
1%

L{{F(I);iz,%,l}z u(iz%lj =S[F(t):v]=R(v).

1% v

4.18 The Barne’s Polynomial Integral Transform
This Polynomial Integral Transform was given by Benedict Barnes [47] in 2016. He defined it like this: if

F (x) be a function defined for x >1, then the Barne’s Polynomial integral transform of F (x) is defined by
(see [47, Theorem 1, p.142])

B[F(x);s]z%(s):J‘lmx“r‘lF(lnx)dx 4.19)

provided the integral converges. We can see that this integral transform is nothing but only a simple
transformation of the classical Laplace transform (1.2) under the mere change of variable t =1n x . Similar
remarks about this integral transform are made by Nuruddeen et al. [28] when they write *“ ...Barnes (2016)
[47] developed the polynomial integral transform, which we see it as a mere Laplace transform in another
transformation” (see [28, p.2]) and also, “ ... the polynomial integral transforms by B. Barnes (2016) which we
see it as just mere Laplace transform in different transformation as he admitted too in his article” (see [28, p.
12]). We remark that for the same change of variable, i.e. f =In X, the Upadhyaya transform (2.3) renders the
following form

ULF (Inx); 20, 4, A} = u(A, A, A ) = 4 [ 37 F (4 Inx) dx (4.20)

provided the integral converges. The comparison between (4.20) and (4.19) at once shows that the Barne’s
Polynomial integral transform (4.19) also follows as a special case of the Upadhyaya transform (or more
appropriately, we may call it the Upadhyaya Polynomial Transform (UPT) in order to keep the mathematical

terminology identical with that of B. Barne’s [47]) (4.20) when we set ﬂ..l = 1,].2 = S,ﬂ.3 =1 in it to deduce
that
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U{F (Inx);1,5,1} =u(l,5,1)= B[ F(x);s | =F(s).

4.19 The Atangana-Kilicman Integral Operator Transform (AKIOT)

Abdon Atangana and Adem Kilicman [48] introduced the Atangana-Kilicman Integral Operator Transform
(AKIOT) in 2013 and gave its properties and applied it to solve certain types of fractional ordinary differential
equations (FODEs) and fractional partial differential equations (FPDEs). They defined it as follows:

If F (x) be a function which is continuous in the open interval (0,00), whose Laplace transform is

differentiable n times, then, the Atangana-Kilicman Integral Operator Transform (AKIOT) of F (x) of order
n is defined by
M”[F(x);s]zM”(s)zL e x"F (x)dx 4.21)

(see [48, (3), p.2]). We observe that the Upadhyaya transform (2.3) under the transformation ¢ — ¢"F (t)
transforms into the following form (which we may call the Upadhyaya Integral Operator Transform (UIOT) in
order to make the terminology identical with that used by Atangana and Kilicman [48]) of F (x) of order n
is defined by :

ULE"F (1); 2, A0s Ao} = u( Ay, 2o, Auon) = A A [0 F (At 4.22)
Now a simple comparison of (4.22) with (4.21) shows that for the choice of the parameters ﬂ.l = 1,12 =S,
ﬂg =1,n — n and the change of the dummy variable £ — X in (4.22) leads one to (4.21) thence showing that
the AKIOT of F (x) of order n follows as a special case of UIOT of order # as

U{x"F (x):Ls.Lnf=u(Ls,Ln)=M [ F(x):s]=M,(s).
4.20 The Hankel Transform
The well known Hankel transform is defined by (see [30, (1.6), p.168] or, [7, (7.2.8), p.345])
H{F(r);s]zﬁ(s)zjomrJv(sr)F(r)dr (4.23)

1
where, denotes the Bessel function of the first kind of order v with v > _E . If we choose the function F (t )

in the definition of the Upadhyaya transform (2.3) as #J (St ) F (t ) then we get

ULET (st)F(1): 2, v} = (A 2, A v) = A [ e (Aut).J, (s26) F (Aot) dlt 4.24)
It can be seen that (4.23) follows from (4.24) for the change of the dummy variable ¢ — 7 in the latter with the
choice of parameter values ﬂ..l = 1,].2 = 0,].3 =1,v=v to yield the Hankel transform (4.23) as the following
special case of (4.24)
Ufes, (st)F(1);1,0,L,v} = u(1,0,Lv) =H [ F(r);s ] = F.(s).
4.21 The L, — Transform of Yiirekli and Sadek

Yiirekli and Sadek [52] introduced the ‘Cz — transform in 1991 which is defined as (see also, [53, (1.6), p. 2 of
21])

LAf(x);y}=F(y)= J‘:xe‘xz}'zf(x)dx,iﬁ(y) > 0. (4.25)
If we set A, :l’/zz =y, A4, =1 and t=x" in (2.3) and define F(t)zF(x2)={f(X)’ *20 ., we
2 0, otherwise
obtain
1 1 ¢ 22 o _ 22 ~
M{F(xz);a,yz,l}zah e’ F(l-xz)-Zxdsz xe f(x)dx=L{f (x):v}=F(y)
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It can now be observed from (4.20), (4.22), (4.24) and (4.25) that by a suitable choice of the function F(I)

and the values of the parameters ﬂl,ﬂz,ﬂg we can also extract several other known and unknown integral

transforms from the basic definition (2.3) of the Upadhyaya transform.
5. DEVELOPMENT OF THE THEORY OF THE UPADHYAYA INTEGRAL TRANSFORM

We now begin the process of development of the theory of the Upadhyaya integral transform (UT) defined by
(2.3) above. Since the UT is one of the broadest possible generalizations of the Laplace transform defined by
(1.2), we develop the theory of the UT parallel to the existing theory of the Laplace transform. We point out that
all the results which we deduce below in this section reduce to the corresponding known results for the Laplace

transform when we set the values of the parameters ﬂl,ﬂ.z,ﬂ? in them as ﬂ..l = 1,].2 =g and ﬂ.3 =1. This is

only natural because the Upadhyaya transform (2.3) is a generalization of the Laplace transform (1.2) as seen in
the subsection 4.1 earlier. We further record here that as we have shown in the fourth section of this paper that a
number of extant variants of the Laplace transforms are special cases of the Upadhyaya transform, therefore
with those respective special cases as mentioned there all the results being developed in this section of the paper
will reduce to the corresponding known or yet unknown results for these various variants of the Laplace
transforms. Hence our results for the Upadhaya transform being developed here may be viewed as the most
generalized results developed till date in the existing theory of the Laplace transforms.

5.1 A sufficient condition for the existence of the UT
Theorem 5.1 If the function F (t ) is continuous or piecewise continuous in every finite interval (0, T) and of

exponential order a for t 2T , then the UT of F (t) defined by (2.3) exists for all ﬂz for which

R (/12 - a/ig) >0 where, R (/12 - a/13) denotes the real part of the complex number ﬂz - a/?g.
Proof We can write (2.3) as below:

T — e —
ULF (1): 20, 20, A} = (A, A, A) = A [ e ™ F (Ag)de+ A [ e ™ F (A)dt (s.1)
Since F (t ) is continuous or piecewise continuous in every finite interval (O,T) , therefore, the first integral

on the right hand side of (5.1) exists. We now only need to ensure the existence of the second integral on the

right hand side of (5.1) in order that the UT of F (t ) exists. For that we observe that

/LJ':e‘”Q’F (ﬂgt)dt‘ <[ J':e‘”?’F (At)dt| < |/11|J':e‘”2’ F(At)|dt.

Since, F (t) is of exponential order a for ¢ > T , from the Definition 1.1 there exists a positive constant K

such that for all # > T such that |F (t)| < Ke®, which gives

i‘f:e‘ﬂﬁ’F (ﬂgt)dt‘ <K |/1‘|J':e‘”°-’.e””ﬂ’dt <K |/7.‘|J.:e‘“2‘“3)tdt

:—(@Kjii)’ if R(4,-ak)>0.

This shows that the second integral on the right hand side of (5.1) also exists if 9{(/12 - a/13) >0.

5.2 The Upadhyaya — Laplace Duality
Theorem 5.2 Suppose that for a function F (t ) both the Upadhyaya and Laplace transforms exist for the sets of

parameters, say, /1‘ ,ﬂz,ﬂg and /11 ’22,’/13,. Then the following relations hold

U{F(t);ﬂwﬂz,ﬂg%u(ﬂmﬂz,ﬂg)=%E{F(I);%}=%f&} %[%}o. 652)
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E{F(z);%}zf[%jz%u{m);z;,g,g}:%u(z;,z;,z;), 9{[%}0 53

Proof To see (5.2) we consider the UT of F' (t) and recall (2.3) as

ULF (1), A, Ay = (A, A ) = A [ F () di

in which we substitute © = ﬂgl‘ to get

U(F ()i, 22} =8 )= [ € F ()

Aot

For obtaining (5.3) we consider the Laplace transform of F (t ) and using (1.2) write

el 4)

wherein we put = ﬂ;v to see

L{F(z);i}= f[ﬁjzg [ F(Ay)dv :%[z; [FeF (a)av]

Z ol A
J'O e F (t)dr

0
AU F ()2 A = DA R). it sn[%j >0.
Note that in the last equality above the quantity 9{[—} > ( enters automatically as we have assumed that

[,{F(t);%} exists. [ |

As per the convention prevalent in the current mathematical research literature (see, for example, [23, (2.7), pp.
18-19]; [50, Theorem 2.3.1 on p.3, Theorem 3.1.1, Theorem 3.2.1 and Theorem 3.3.1 on p.4, Theorem 3.4.1
and Theorem 4.1.1 on p. 5, Theorem 4.2.1 and Theorem 4.3.1 on p.6 and Theorem 4.4.1 on p.7]; [51, p.1, 2,
Section 3 and (3.2) on p. 5, Second Entry of Table 5.1 on p.18]) we call the relations (5.2) and (5.3) above the
Upadhaya-Laplace Duality Relations (ULD). It is also pertinent to mention here that similar other duality
relations between the Upadhyaya transform and other extant variants of the Laplace transforms as mentioned in
the preceding section of this paper also exist and they can be established along the similar lines. This will be the
subject of one of the future papers of this author.

5.3 Upadhyaya Transforms of Some Elementary Functions

In view of (3.7), if we disallow null functions (see, [6, p.9 and p.42]) we can see that the inverse Upadhyaya
transform of a given function is unique. The same can be calculated from (3.7) by finding the sum of residues of
the integrand utilizing the Residue Theorem (see [6, (24), p. 143 and Chapter 7]). Now we calculate the
Upadhyaya transform of some elementary functions which are often utilized in various branches of mathematics
and also occur frequently in the problems of physics and engineering. The Upadhyaya transform of the
trigonometric and hyperbolic functions will be given in the sequel.

For finding the UT of #“ where @ is any complex number, we have from (2.3),

UGt s A s Ay = A () de = A [ e

ZM%W,%(ZZ)>O,9{M)>—1. oY

From (5.4) follows that
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ld

{ﬂzu-#l ’2’1 /12 /13} W() 9{(/12) >0,5K(a) >—1. (5.5

Some special cases of (5.4) and (5.5) are as follows:
When a = n,n € N ( the set of natural numbers) it follows from (5.4) and (5.5) at once that

s, 24} =25 R ()0 56
and
{ﬂz,m A, A, ﬂs} /11/?3 : R(4,)>0. (5.7)
When @ =0 (5.4) and (5.5) give
u{l;zl,zz,zg}:%,m(zzpo. 58)
and
{ 4%%}% R(1,)>0. 59)

5.4 The Linearity Property of UT
Theorem 5.3 Let F, (t) F, (t) be two functions with UTs u, (/7.‘ ,/12,/13) and U, (/7.‘ ,/7.2,/13) relative to the

parameters A, A,, A, and cl,c2 be any constants then
U{cF (1) + . F, (1): 4. A A} = qU{E (0): 0. 2. A} + UL Fy (1)1 4. 4, A} (5.10)
=y (A, &)+ euy (4,4, 4)

Proof This result follows immediately from (2.3) by using the property of linearity of integrals. It can be easily
extended to the case of more than two functions. |

5.5 First Shifting (First Translation) of UT

Theorem 5.4 If L[{F t ‘/7.‘,/7.2,/13}211(/7.‘,/12,/13) then
U{e"F (); 4, 4, A} = U{F (1); 4, —ad, A} = w( A, 4, —ak, 4y) (5.11)

Proof Using (2.3) we write the left hand side of (5.11) as

U{e"F (1) 3 Ao, A} = A [ e e F (A} di = 4 [V F (A0
=u{F(s ;&,ﬂz—aﬂg,/@}zu (As Ay —aks, Ay)
|

Example 5.5 As an illustration of the first shifting theorem of UT we find the UT of the function

a bt

F(tae+ 1) ,E)K(b) > —1. From (5.4) and (5.11) follows that
7] ST IV AP 1 S7) Y W RS
C(a+1) C(a+1)
(5.12)
A R(A-bA)>0.5(a) >
(4 —b4,)
which also renders the companion result for the inverse UT of the above function as
tuebt
u —i A A A —a,ﬁt(ﬂz—bﬂ})>0,ﬁt(a)>—l. (5.13)
{(’7’2 ~b4,)" [(a+1) A4
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A special case of (5.12) deserves special mention. When a =0, (5.12) reduces to

uie”; A, A, 4, :L,Eﬁ(ﬂz—b@po. (5.14)
{ } (4 —b4,)
and the inverse UT formula for recovering the original function is
bt
u AL A, /23} R(A4,—-bA,)>0. (5.15)
{(ﬂz —bk)’ A

If weset b= ik(i = \/—71) in (5.14) we see that

U%“Mw%ﬂﬁzzzgizymc@—w@)>o

Noting that e™ =coskt+isinkt and the linearity property of UT (Theorem 5.3) in the above relation yields

U{coskt; 4,4, A} +itd{sinkt; 4,4, 4,} = @ jlgiz)-zzl-%gkﬂg) = ’?‘llgzi‘;z})

Now equating the real and imaginary parts this last relation at once admits

U{coskt; 4,4, .} = A, —— = R(4,-ikA,)>0 (5.16)
A +k A
and
. KA .
Uisinkt; A, 4,, JR(A, —ikA,) > 0. 5.17
{sinkis A} = 20 (A k) 17
for which the corresponding formulae of inverse UT for recovering the original functions are respectively
kl
utl b — —ikA,) >0 5.18
{%W;M&} R (% ikk) 519
and
kt
u-l{ YN 23} SINKE (4, —ikA,) > 0. (5.19)
A +kA kA,

For finding the UT of the hyperbolic functions we proceed as below:

Ufsinhat; 4, 4, 4} = 4 [ ¢ ' sinh (k) dt—/i‘ j (e — e )dt

&I(——a@ e(m@)dl /1{ 1 1 }
A—al, A+alk,

for 9{(/12 - a/23) >0 and 9{(/12 + a/?3) > (), which on simplification yields,

U{sinhat; A, A, A} = “’11’13232 R (4, +al,)>0. (5.20)

The inverse UT formula correspondlng to the last result is
inh at
u—l{ 34 1,23} g R(4,tak)>0. (5.21)
A=k ak’

Similarly, we can show that

U{coshat; A, A, A} = /Mz,g R(4 tak)>0. (5.22)
and
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u-l{ﬂz 4 /132,/11 A, /13} COSZ‘” R(4,+ak)>0. (5.23)

Following Spiegel [6, p.3] we provide yet another example of the first shifting of UT below:

Al
A +44;
yields that U{e"cosZt;ﬂﬂ,ﬂz,ﬂg} U{cos2t; 4, A, + A, A} = A (4 +2) 2
(L+A) +44;
in the special case when 21 =1, /?2 =5, /?3 =1, when the UT reduces to the Laplace transform, this expression

1
gives U{e™ cos2t;1,5,1} = U{cos 21,5 +1,1} :(s—+2)
(s+1)"+4

It can also be seen here that, as an illustration of the Upadhyaya-Laplace Duality relation (5.3), we can also

Example 5.6 From (5.16) we can write L{{COS 2t;/11,/22,/13} = which in view of (5.11) at once

. It can be seen that

= ﬁ{e_t cos 2I;S} as given in [6, p.3].

obtain the UT of the function e ' cos2f with respect to the parameters 2‘1 ,/12',/1; given that its Laplace
(s+1)

2

. To that end we start from the left hand side of (5.3)
(s+1)" +4

transform with respect to the parameter S is

as follows

L A N
E{e"cosZt;ﬂz}— 4 - (’12""?3)’13 |
ﬂ'j [/12 /12_,'_23) +4232

4| (B+4)4 fiu{e cos26: 4. Ay, ).

A (/12+/23) +4?

5.6 Second Shifting (Second Translation) of UT
Theorem 5.7 Let F (1) be a function with UT U{F (t); 4,4, 4} =u(A, 4. 4,). Let

F(t-a),t>a
G(r)= =F(t—a)H(t—a
0= - -a)
where, H (t - a) is the Heaviside step function defined by (3.3). Then

U{F (t—a)H (t—a); A, A A} = U{F (1) 4,4, A} = e *Pu(A, 4, 4,). (5.24)

Proof From the definition of UT (2.3) leads us to

U(G ()i A A A} = A ] € G (A

Noting that,

G<%u>={””%‘,‘£3f;”>“

the last expression gives
U{G(u):h Ao A} =4[, & F (Au~a)du

which on putting v = 231,! —a changes into
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U{G(u); 4.4, 4} Z%e‘@”@ :e_ﬁ?vu“F(v)dv.
Now substituting v = 23w , the above expression finally yields

UG (1) Ay 2oy A} = A2 [ e F (Aw) dw = UG (u); 4, A, A}

Alternative Proof of the Second Shifting Theorem of UT by using the ULD
A shorter proof of (5.24) can be given by invoking the Upadhyaya-Laplace Duality (ULD) (5.3) which gives

that for any function F (t ) its Laplace transform and UT are connected by the relation
E{F(t);%}Z%M{F(t);ﬂl,ﬂz,/@}. (5.25)

From Speigel [6, (4), p. 3] we have £{G (t);s}=e “L{F ();s}, which for s —>% gives

c{g(r);%}=e—%%c{p(r);%} (526)

Now on using (5.25) on both sides of (5.26) yields
SUC) I A A= ZULF(): 21 )
from where the sought result follows immediately. |

An illustration of the Second Shifting Theorem of UT is given below:

Example 5.8 Following Spiegel [6, p.4] we consider F (I ) =r , then U {t 3;/ﬁi1 ,/12,/?3} 2/13 (from (5.6)

), thus (5.24) gives

f(e-2) (=22 2.2} =0

This result reduces in the limiting case (when ﬂ..l Zl,ﬂ.z =S,ﬂ3=1) to the known result
—2s
3
c{(r-2) H(1-2)} =

5.7 Change of Scale Property of UT

Theorem 5.9 Let L[{F(t);ﬂ‘,ﬂz,%}zu(ﬂ‘,ﬂz,%) then
U{F (at); A, A, A} = u{ %%,ﬂg}:u(i,ﬁ,/@j. (5.27)

(see Spiegel [6, p.4]).
N

a a
Proof Let G(t)=F(at). Then

L{{G(u);ﬂl,ﬂ?,ﬂq}Zﬂl"‘:e‘@”G(ﬂ?u)du zﬂ.lj‘:e‘ﬂ“-”F(aﬂBu)du

which upon putting au = v gives

U{F (au); A, A, A} = ﬂ"j e F (Ay)dv = L{{F(V);%,%,/@}.

An illustration of the Change of Scale Property of UT now follows:

Example 5.10 Following Spiegel [6, p.3] we consider F (I ) =sint which gives
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Ufsing: Ay Jy. A} = ﬂfﬁf,

thus follows

A‘ j
S b
U{sin3t; 4,4, 4.} = 32 = f’% .
(/@J » A 94
3) A
This expression in the limiting case 2‘1 =1, /12 =g, /13 =1 gives the known result (see [6, p.3])

U{sin3r;1,s,1} = 23 5
s°+

= L{sin3t;s}.

5.8 UT of Derivatives
Theorem 5.11 If L[{F(I);/il,/iz,/?g} = u(/il,/iz,/ig) and if F(I) is continuous for 0 < ¢ < N and is of

exponential order for 7 > N, while F'()is sectionally continuous for 0 <7< N then

U{F'(’)%Jz,/%}Z%U{F(l);&,ﬂz’ﬂs}—%F(o), (5.28)
and
U(F ()i 2 A= ULP(): 2 e A} =T FO). 529

Proof From (2.3) we have

UL ()i e R} = A, € F (2.

Put u = ﬂ3t to get

ULF (1) 20 A} =2 e an=- 2 (o)+%j;°e-MF(u)du

which on putting u = ﬂ3t in the last integral yields
U{F'(t); 4, A, A} = —%F(O) +%L e P F(At)dt (5.30)
4

Now (5.28) follows from (5.30) if we take out —= outside the second integral on the right hand side of (5.30)

and interpret the remaining expression as {F (t );/11,/12,/13}. Similarly, by taking out % outside the
second integral on the right hand side of (5.30) and interpreting the remaining expression as

U{F(t);ﬂz,ﬂz,ﬂg}produces (5.29). [ |

Example 5.12 Following Spiegel [6, p.4] we take F(I)ZCOS 3¢, which gives F'(t):—3sin3t and
F(0)=1 then

U{F'(r);&,ﬂz,ﬂghu{—3sin3r;21,zz,zg}=%u{cos3;;4,zz,zg}_%x1

w4
A4 +94) 4

This result in the limiting case when 2‘1 =1, /12 =g, /13 =1 gives the known result (see [6, p.4])
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s -9
s +9 s°+9
For finding the UT of the second derivative of F ( ) we assume that F (t ) and F '(t ) are continuous

U{-3sin3;1,5,1} = -1+ = L{-3sin3t;s}.

in0<7< N and of exponential order for # > N while F"() is sectionally continuous for 0<#< N then

U[F™(0):4, 20,2} = f ju{F AR EE O F(0) 63

To prove the result of (5.31) we let G( )ZF ( ) then G( )ZF ( )thus

ULF(1)3 2 A} = UG (1 &@&}%u{c}(r);&,@,&}—%c} 0
on using (5.28), which may be rewritten as
U{P(1):A 2 A) = S U(P ()R AA) -5 F

A further application of (5.28) on the right hand side of this equation leads us to (5.31). By induction we may
similarly show that the UT of the n"- derivative of F (I ) is given by

ULF® (1) 20, 2,2.} = f ju{F )iA Ao A}~ “2'” F(0)-2%"F (o)

%{j "(0)- ...—%F(”‘l)(o).

(5.32)

5.9 UT of Integrals

Theorem 5.13 Let L[{F(r);ﬂ‘,ﬂz,ﬂg}: u(/iu/iz’/as) then
“{L:F(”)d”%ﬂz’ﬂ#%U{F(f);ﬂpﬂz,ﬂsh%u(ﬂpﬂz,ﬂg). (5.33)

Proof Let G (1) = [ F(u)du, then G'(r)=F (r)and G(0) = [\ F () du =0. Now,
U{G'(1); 4, A, A} = ULF ()5, 20, 4}

Or,
%M{G(I);&,@,%}—%G(O):u{F(’);ﬂuﬂz’ﬂS}

which at once yields (5.33) after a little simplification. |

Example 5.14 Following Spiegel [6, p.4] we consider F' (t ) =sin2¢ which yields

Ulsin26 4,4, 4} = z;ff,zg‘

Thus,

A _24A 244
U{j sm2udu/11/?2/13} PRFVYL /12(/12+4/13)

This result for the limiting case ﬂ..l =1, ﬂ.z =g, ﬂ.3 =1 gives the known result (see [6, p.4])

r. 2 t.
L{{J. sin 2udu;1, s,l} =—= E{J. sin 2udu;s}.
0 s ( 57+ 4) 0
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5.10 UT for Multiplication by Powers of ¢
Theorem 5.15 For any natural number 7, if the UT of any function F(t), ie. L[{F(t);ﬂ‘,ﬂz,ﬂg}

= u(/il s /12, /13) is differentiable 7 — times with respect to the parameter ﬂz , then we have

U{r"F (1), s Ao} = (<A0)' jﬂ;{u{F(r);A,ﬂz,ﬂg}}= &) d"%{um,zz,zg).}<5.34>

Proof We observe that for n =1,

dﬂz{u{F ot i) = AL e P | A e F ()

=4[ (~t)e ™ F (A)dt = ﬂl j (At ) F(A)dt =—Zu{rF(r);4,zz,4}
which gives that
U (0): 2 e A} = (-2) S| A e F ()

showing that (5.34) holds for n =1. Suppose it holds for the casen = r, r being a positive integer greater
than 1 thus, we can write

d’ N
L4203 ulrriniaa.a)

Differentiating both sides of the above equation with respect to ﬂ.z gives

W{{ ()4 2, A J} = ( Jr"{u{r (1) 4,4, A}} = ( J%I)% )(At) F(At)dr

d4,
r+l
i -1 i r+ -1 .
( J A, e (1) (Aut) F(At)dt = H Al e (a)” w)dr{z) ULt F (1) 4,20, A}
(5.34) now follows immediately from this equation by the principle of induction. |

Example 5.16 Following Spiegel [6, p.5] we consider F(I)=€2t, then L{{€2t;/1‘,/12,/13}= /1‘

A2
C(_ﬂg)d{ A }:( A

which gives

i, (4 =24]  (A4-24)
and
2 2, 2 d’ /11 — 2/11/132
N F P arreeon

Both these results reduce in the limiting case ﬂl =1, ﬂz =g, /13 =1 to the known results of [6, p.5] viz.,

- cfres)

L{{teZ’;l,s,l} = zﬁ{teZ’; } and L{{tzeZ’ Ls 1}

1 2
_2)2 (s—

5.11 UT for Division by ¢

Theorem 5.17 Let U{F (t); 4,4, A} =u(A4,4,. 4,) .if 15‘3 r
uf " ina -

exists then

) J:u(ﬁl,ﬂz,ﬂg)dﬂz. (5.35)
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Proof By the definition of UT of F (I ) we have

w(h, A )= A4 e F (A)dr.
If we integrate with respect to ﬂ.z from ﬂ.z = ﬂ.z to ﬂ.z = oo on both sides of this relation then
[, (A2 )dd, =4[, d4[ e ¥ F (Ag)dr

Since the variables ﬂz and ¢ are independent therefore the order of integration on the right hand side of the last

relation can be interchanged to achieve

[Ju(hod A)dd =4[ dt]” ¥ F (Ar)dd, =4[] F (A1) drf Hdj,

At

:ﬂ:FW)d{e_IJ =4L§°%’tFW)dr=

5.12 UT of Periodic Functions
Theorem 5.18 Let F(t) be a periodic function with period T, i.e. F(t+nT) = F(l) for n=1,2,3,...,
then

U{F (1); 4, 4, A4} = ,sz Rl LA (x+nT)}dx. (5.36)

n=0

Proof We have from the definition of UT,
oo > (11+1)T _
ULF (1) A A, A} =4[ e ™ F (At)di =AY [ e F (At)dr
n=0

Put t = x+nT sothat, df = dx in the above equation to get the desired result. |

Corollary 5.19 If ﬂ.3 is an integer then (5.36) assumes the form

U{F () 4/12/13}— _“ j ¢ F (Ayx) dx. (5.37)

Proof When /13 is an integer then F {/Ai3 x +nT } = F /13)6 ) which renders (5.36) as

UL (1) ds Ay = A3 [ e F () dv =4[ e F (4,%) dx(ze J

n=0

n=0

= /?,IJ.OTe_MF(/?gx)dx(l+e_“ +ehT +) __A J. e ™ F (Ax)dx

1—e ™" do
[ |
5.13 Initial value Theorem of UT
Theorem 5.20
ANmF (1) = Alim F () = lim LU{F (1): 4.4, 4} (5.38)

Proof From (5.28) we have
U{F'(f);/%,ﬂz,ﬂg}=%U{F(t);&,ﬂz,ﬂg}—%F 0
Taking limits of the above expression as ﬂz —> oo gives
fim U{F ()i A 2} = fim A} e F ()i = fim ZULF(): A =5 F (0

Or,
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0= tim 2 U{F():A. 22}~ (0)

From where (5.38) at once follows keeping in mind that F (0) =limF (¢ ) =limF (At )

5.14 Final Value Theorem of UT .
Theorem 5.21
Alim F(At) = lim LU{F (1): 4. 2, Ay} (5.39)
Proof We recall (5.28) -
UL ()i 2 B = GFULF (0 A =5 F (0
On proceeding to the limits of the above equation as ﬂz — 0 we get
limU{F (1), A} = lim 4] e—%—fF'(ﬂzr)drzgglo%u{F(r);ﬂa,zz,ﬂz}—%F(O)
Or
A, (ime )P (2e)ar = fim 22 U{F (1) 4,2 2}
=4[ F'(At) )i =lim ~2 u{F /11,/12,/13}—21? 0
Or
_A
(P -utroaiat-dro
Or
ZHlmF (A1) (0) —gmﬂzu{F )i R} F
The required result is now evident. |

5.15 UT of UT of a Function
Theorem 5.22

U(U{F (1) A A A YA 2o A) = A ) M @ ' (5.40)
Proof

The definition (2.3) of UT of a function F' (t ) with respect to the parameters ﬂ..l R ﬂ.zﬂ} R 13 gives

ULF (1), A, A} = (A Ao ) = A [ F ()

On taking the UT of the above equation again with respect to the parameters ﬂ..l ﬂ.z 13 we obtain

U{ULF (1) 4, 20 A} A0, 2o A} = A [ e (A, A0, A ) d A,
=A[ et Al e E zgr)dr}mz R[] e [T (Ar)at|da.

As the area (region) of integration in this double integral is the whole of the positive quadrant of the ﬂ‘z —t

plane, on interchanging the order of integration of these independent variables we have

UU(F (A A A AAY= AN F (| [P az, |
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The desired result now follows at once by evaluating the integral inside the square brackets on the right hand
side of the last equation. ]

5.16 Convolution Theorem of UT
Definition 5.23 The convolution or faltung of two functions F' (I ) and G(t ) is defined by (see, for example,

[6, (11), p.45]
H ()= F(a)G(u-a)da=["F (u-a)G(a)da= F*G 541

0

Theorem 5.24 Let F(t) and G(t) be two functions such that U{F(t);i‘,ﬂz,ﬂ}} =y, (/1‘,/12,/13) and
U{G(l);ﬂ‘,ﬂz,ﬂ}} =u, (/1‘,/12,/13) then the UT of their convolution H = F *G is given by

u{H;ﬂﬁ,ﬂz,ﬂ&u{F*G;ﬂﬁ,ﬂz,ﬂg}=%ul(4,ﬂz,ﬂg)-uz(4,ﬂz,ﬂz). (5.42)
Proof Consider the right hand side of (5.42)

w (A &)y (A Ao ) = 4 [ e F (At)dt- 4, [ e G(Ap)dp
=2 [T e (A)G (A p)drdp.

where the double integral is taken over the entire first quadrant of the # — p plane bounded by the axes t =0

(5.43)

and p =0. On making the change of variables p=¢ and t =r— p =r—¢g which transforms the original

axes t=0 and p=0 of the t— p plane into the lines ¢ =0 and g =7 respectively in the new g—r
plane (see also, [7, (3.5.5), p. 158 and Fig. (3.3), p. 159]). Thus the new limits of integration in the above double
integral (5.43) are ¢ =0 to g =r for the g— variable and ¥ =0 to ¥ =oco for the r — variable and the

Jacobian for the change of variables (p, t) - (q, r) is

a
a(t,p) or dq 1 -1
dtdp = drdg = drdg = drdg = drdq.
D a(r’q) raq a_p a_p raq 0 1 raq =draq
or dq

Thus the double integral (5.43) takes the form

(A A )y (A ) = A [ e [ F(4,(r~4))G(Ag)drdg

r=0

or, ul(ﬂl,ﬂz,ﬂg)-uzm,ﬂz,ﬂg)=%I;e%’drjq’_f(ﬂgr—@q)G(ﬂgq)-ﬂgdq (5.44)

Note that as g€ (O,I‘) the variable, /7.3qe (0,/131‘) thus setting v = ﬂBq renders (5.44) with the help of
(5.41) as

ul(ﬂl,ﬂz,ﬂg)-uxﬂl,ﬂz,ﬂg% e | [ F(ar-v)G(v)av ]

=(

ie.,

WAL (A2 ) =3[ Gl = 2 U+ Gi 2, )

Corollary 5.251If H, = F,* F, * F, then (5.42) gives

U{H: 2. 2. 4} = U{F, *(F, *Fg);/%,ﬂz,/%}Z%U{E;%,%,%}U{(Fz *F)iAn Ay A}
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:(%} ULF; A A, A ULy Ay, Ao, A UL F A Ay A)

If H =F*F,*..*F, then (5.42) on repeated use yields
U{H ;A4 A, A} = ( J l—IU{F,,ﬂ1 A, A} (5.45)

5.17 UT of Partial Derivatives of Functions
Theorem 526 If Y =Y (x,t)and  U{Y (x,t); 4,4, 4} =Y (x;4,4,,4,) and

Y,(x,o){%(y(x,t))} then

t=0

0 ulS (v (xz>)ng}=% (54.4,.2)=2¥(x0). (540
(ii) U{g—tz(Y(x,t));&,ﬂz,ﬂg}z[%j Y (54,4, 4,)- /1‘/52 (x,0)- j‘th(x,O). (5.47)
(iif) u{s—x(Y(x,r));/il,ﬂz,ﬂg}=%(Y(x;/11,/12,/13)). (5.48)

(iv) u{g—;(Y(x,t));ﬂl,ﬂz,ﬂg}:jx—Z(Y(x;ﬂl,ﬂz,ﬂg)). (5.49)

Proof (i) Using the definition of UT, we get

U2y (x)iho = Af] e Ly (20

Zﬂligmn[{e‘”ﬂty(ﬂz } J.ﬂz (x. A1) _ﬁ“tdt}

which on simplification gives (5.46).

(ii) Let V (x,1) :%{Y(x,t)}: Y, (x,t). Now,

U S )t =t DAV iAo BV (52,2) =2 (30

The second equality of the above expression follows from the use of (5.46). Proceeding further we have,

u{g_;(m,t));&,zz,z}}=%u{wx,r);4,ﬂz,@}——

:%u{%(Y(x,t));i‘,ﬂz,ﬂg}—%K(X’O)‘

0
Using (5.46) again for the value of the expression U {a—(Y(x, t )) ;/'i‘,ﬂz ,/13 in the above equation leads
t

to (5.47) after a little simplification.
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u{aa—x(Y(x,r));M,ﬂg} Af e S (Y ()i =2 &Y (x. A0t

(iii)
[u{Y X1 /21/12/23}} ( /11/12/%))
(iv) We note that L[{;—;(Y(x,l))}zU{s—x(Z(x,t))}, where, Z(x,t)zs—x(Y(x,t)). Then form
(5.48) we obtain
u{sz(Y(m))}:%[Z(xr] [M{Z xt): A Ao A} |
U 2 ) A || =] (7 (5,020 |- 54 )

6. THE n— DIMENSIONAL GENERALIZATION OF THE UPADHYAYA TRANSFORM

Sometimes the problems arising in physical sciences and engineering are also solved by the two dimensional
analogue of the Laplace transform, often called the double Laplace transform (see, for instance. Patra [8, section
4.6, pp.161-165], or, Debnath and Bhatta [7, section 4.11, p. 274-280 and Exercises 59-62, pp.294-295]).
Therefore, to cover such cases and many other possible fields of the future applications of the Upadhyaya
transform we now present a generalization of the one- dimensional Upadhyaya transform defined by (2.3).

Analogous to (2.1) we define the complex parameters l‘(j) , ﬂz(j) , ﬂg(j) by the relations

sof] (o] (g

i=0

: i=0 ; i=0 ;
21(1) — - ’/1(1) — - ’/1(1) — 6.1)

Sy [ ()

i=0 i=0 i=0
(4)

&) and r are  nonnegative  integers (i =12,..., 6) and

i i

are complex constants. To tackle the situation at hand, we can also choose the
parameters ﬂl(j) ,ﬂfj) ,ﬂ}m and the constants a(j),b‘(j), C(j) s d‘(j) s k‘(j) ,l‘(j) to be real numbers also.
Now we define the 7n— dimensional Upadhyaya transform of a function F (tl,...,t”) of n— variables

t,...,1, as below. We assume that the function F(tl,. . .,t”) is of exponential order a(a > 0) for each of

the 7 — variables 7,,...,7

>“n*

Definition 6.1 The n— dimensional Upadhyaya transform of a function F(tl,...,t”) of n— variables

4 t

n?’

which is of exponential order a(a > O) for each of the n— variables f,...,f, is denoted by

JERRES) n

UAF (1.1t ): A7 20 AV A" A" 27} and defined by
UAF (1, )i AV, 20201020 29 20 =0 {2929 20: 04" 4% 2]

1 2 1 2 3 1 2 3

. i —[iﬂi”ﬁj (6.2)
=TTA"[(n)- [ e TR (A% A, Y.t

| ) n*
i=1
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provided the integral exists. The symbol J.: . (I’l) . J.: in the above equation means that the integral sign

I appears 1 times in this equation corresponding to the 7 variables of integration f,,...,f, . It is also to be
0

noted that the subscript 7 attached with U, (i.e., the symbol U, ) signifies the n— dimensional UT of the
function F(tl,...,t”).

We remark that (6.2) generalizes or will generalize a number of multidimensional variants of the Laplace
transform which either currently exist in the literature or are yet unknown and may appear in the future. We
mention below some special cases of (6.2) with which the author is aware of at present.

6.1 The Multivariable Laplace Transform
If F (tl,. . .,t”) be a function of 7 positive variables then the multivariable Laplace transform (i.e. the n—

dimensional Laplace transform) of F' (tl yenes t”) is defined by (see [54, (2.5.2), p.47])
‘Cn{F(tl""’tn);pl""’pn}: f‘n(pl""’pn)

oo

= ...(n)...J.:e_"’"_“‘_""’"F(tl,...,t”)dtl...dt”.

0

(6.3)

If in (6.2) we choose ﬂl(j) =1= /13(j) and ﬂfj) =p; for j=1,...,n then it reduces to (6.3) and we can

easily observe that

L{n {F(tl""’tn);l’ pl’l;“';l’ pn’l}: un{l’ pl’l;“';l’pn’l}

:Eﬂ{F(tl""’tn);pl""’pﬂ}:f;z(pl""’pn)’

As far as this author knows till date the special case of (6.3) when 7 =2 has been studied so far by some
authors and it is called the Double Laplace Transform. For the interested reader we refer to the instances as are
pointed out at the beginning of this section of the paper. Still the double Laplace transform does not seem to be
studied as extensively as its counterpart the classical Laplace transform and the various variants thereof all
corresponding to the one-dimensional case. One more relevant reference in this direction is the very recent work
of Aylik¢i and Dernek [53]. These authors also highlight this fact by pointing out that: “But there is a very little

work available for the double Laplace transform of f (x, y) of two positive real variables x and y and their

properties” (see, [53, p. 2 of 21]). Given these facts, now we proceed to study the special case 7 =2 of (6.2) in

some detail. Consistent with the modish terminology in the literature, we call the n =2 case of (6.2) the
Double Upadhyaya Transform (DUT) and define it as below:

Definition 6.2 The Double Upadhyaya Transform (DUT) of a function F (7,,2,) of two variables £,,7,, which

is of exponential order a (a > 0) for each of the variables f,,?, is denoted by

U {F(t t)'ﬂ(l) 20 ). 22 4(2) 1(2)}
2 1272 )2 7% 277, 20 0 00
and is defined by
uz{F(lplz);/11(1)’/151)’/13(1)§/1(2)’/1(2)’/13(2)}: u, {/1(1)’/1(1)’/1(1);/1(2)’/1(2)’/1(2)}

1 2 1 2 3 1 2 3

)12 = —(ﬂ(l)tﬁ—ﬂ(z)t,) . , 6.4)
:2'1( )2'1( )J.() J.() et T F(ﬂg( )ll’ﬂg( )lz)dlldlz'

whenever this double integral exists.

6.2 The Double Laplace Transform
Now we observe the double Laplace transform, which is the special case of (6.3) when n =2 . Therefore, the

following equation defines the double Laplace transform of a function F (tl,tz) of two variables #,,?,, which

is of exponential order a (a > 0) for each of the variables 7,7,
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‘Cz{F(ll’lz);PpPz}: fz(Pppz):J.:J.(:oe_tlpl_tzsz(ll’lz)dlldlz‘ (6.5)

provided, of course, the double integral in question converges. In this context we refer the reader to Patra [8,
(4.25), p.161] or, Debnath and Bhatta [7, (4.11.1), p.274] or, Aylik¢i and Dernek [53, (1.5), p.2 of 21]. It can be

very easily discerned that (6.4) reduces to (6.5) when we put ﬂl(l) =1= 2,1(2) = 2,3(1) = 2,3(2) and ﬂfl) =D
&(2) = p, thereby at once showing that

U{F(t.1,);L p 5L po 1} =, {1, p L pout} = L{F (1.1,): . 2o} = £ (21 12)-

6.3 The Iterated Laplace Transform

This Laplace transform is a particular case of the double Laplace transform of a function of two variables in
which the transformation variables are equal (see Patra [8, section 4.7, p.166]). The iterated Laplace transform is
defined by (see Patra [8, (4.46), p.166])

L7 —p(y+t,
Iﬁ{F(ll’lz);p}:KZ{F(Il’Iz);P’p}:fz(P’p):J.O J.o e ')F(lvlz)dﬁdlz (6.6)
where the symbol [/, denotes the iterated Laplace transform. For the setting of the parameters

ﬂ(l) =1= ﬂl(z) = ﬂ(l) = 2,3(2) and ﬂfl) =p= &(2) in (6.4) we obtain (6.6) from it to see that

1 3

L{Z{F(ll,tz);l,p,l;l,p,l}:uz{l,p,l;l,p,l}=I£{F(t1,t2);p}=Q{F(Zl,tz);p,p}:fz(p,p).

6.4 The Double ‘sz — Integral Transform of Aylik¢i and Dernek
Very recently in 2018 Aylik¢i and Dernek [53] have defined the £,,— integral transform which extends the
L, — integral transform of Yiirekli and Sadek [52]. For a function f (x, y) of two variables X and y the

double Lapalce — type transform 522 —is defined in the positive quadrant of the Xy — plane by the double
integral (see [53, (2.1), p. 3 of 21])

L, {f(x,y);p.a}=F(p.q)= IO IO xye 7V f(x,y)dxdy, 6.7)
whenever the integral exists. A comparison between (6.4) and (6.7) shows that the choice of the parameters
1
ﬂl(l) = ﬂl(z) 25,23(1) = 2,3(2) = l,ﬂfl) = pz’&(z) = q2 and the choice of the variables f, = xz,tz = y2 with

the following definition of the function F (tl , l2) )

F(tl,tz)zF(xz,yz):{

leads us to (6.7). Thus we see the following relation

1 1 1 1 z
M2{F(xz,yz);a,pz,l;—,qz,l}= u, {E,pz,l;—,qz,l}=£22{f(x,y);p,q}=F(p,q).

f(x,y), whenever x>0 and y >0

0, otherwise

2 2

6.5 The Double Integral Transform of Atangana and Alkaltani
A new double integral transform was introduced recently by Atangana and Alkaltani [55] as below:

For a function f(x,t ) which is continuous and its Laplace transform is 7 times and m times partially

differentiable, the new integral transform of Atangana and Alkaltani is defined by (see [55, (2.1), p. 425])

K, {f(x1):s.p}=F,(s.p)= f: f: X't"e U £ (x,t) ddt. (6.8)

Here the subscript AA attached to the symbol F signifies the words Atangana and Alkaltani. On setting the
variables f, = X,f, =t and by observing that from (6.5) the double Laplace transform of the function

F(t,,t,)=F(x,t) = f (x,t) is given by
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LAf(xt)is.p}=fo(s.p) J. J. P (1) dxdt (6.9)
which, on differentiating partially # times with respect to s and m times with respect to p yields
an+m n+m

2 (o)) ([ Conpar)

n n m f (S p ) n m
ds"dp a “ )aa 6.10)

_J. J. x"t"e M f (x,t)dxdt = ”m{f x,1);, p} Fo.(s,p)

and now utilizing the relation between the double Upadhyaya transform and the double Laplace transform from
the subsection 6.2 above we can rewrite (6.10) as
an-Hn n+m

m@AUUxtMHpm

= Kn,m{f(x’t);s’p}:fAA(S’p)'
which shows the relation between a special case of the double Upadhyaya transform (6.4) and the double
integral transform of Atangana and Alkaltani [55] given by (6.8).

Ls,1;1, p,1
na m (uZ{ S p }) (611)

6.6 The Double Aboodh Transform
Aboodh et al. [56,57] have introduced the double Aboodh transform in the literature defined as (see, [56,
section 1.1, p.48213]) below:

For a function F (tl ,tz) of positive real variables f,,f, which is capable of being expressible as a convergent

infinite series, the double Aboodh transform is given by

I peope —(uty+vt,
AZ{F(tl,tz);u,v}zKz(u,v)zaj'o [ e F (1,1, ) di,. (6.12)

1 1
Comparing (6.4) and (6.12) shows that for the choice of the parameters /1(1) =—,/1(2) =—,/1(1) =1= /1(2)
1 u 1 v 3 3

and ﬂfl) =u, &(2) =V in (6.4) it reduces to (6.12), thereby yielding the relation

U, {F(rl,tz);i,u,l;%,v,l}: u, {i,u,l;%,v,l}z A{F(t.t,);u.v} =K, (u,v).

6.7 The Double Mahgoub Transform (in fact, the Double Laplace-Carson Transform)

Thangavelu et al. [58] have used the double Mahgoub transform (which, in fact, is nothing but the double
Lapalce-Carson transform (see, subsections 4.2 and 4.10 above)) which is defined by them in Definition 1.2

p- 16 (see [58]) as under:

For a function F' (t1 ,tz) of positive real variables 7,7, which can be written as a convergent infinite series, the

double Mahgoub transform (i.e., truly speaking, the double Laplace-Carson transform) is given by
M {F(t.t,);u,v}=H,(u,v) uvI I ) g (11 ) drdt,, (6.13)
U, v being complex variables.
A straightforward comparison between (6.4) and (6.13) with the choice of parameters /11(1) = u,/11(2) =V,
2’2(1) = u,ﬂz(z) = v,ﬂfl) =1= 2,3(2) in (6.4) at once lends (6.13) to show that
U{F (t.1,)su,u, Ly, v, 1 =, {uu, v, v, 1} = ML {F (1., );u.v} = H, (u,v).
6.8 The Double Elzaki Transform

Elzaki and Hilal [59] used the double Elzaki transform to solve the telegraph equation. A few other works using
the double Elzaki transform are [60, 61]. In [59] the double Elzaki transform is defined by the relation

E{F(t,.t,);u,v}=T,(u,v) qu. J.O 1) drdt, (6.14)

for complex values of u,v, where F (tl,tz) is a function of the positive variables f,,f, which possesses

convergent infinite series expansion (see [59, (1-4), p. 96]). From (6.4) we observe that for the choice of the
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parameters ﬂl(l) = u,ﬂ.(z) = v,ﬂ(l) = —,ﬂ(z) = —,ﬂ(l) =1= 2,3(2) in it, we obtain (6.14) from it to have the

1 2 2 3

relation
1 1 1 1
U, {F(rl,tz);u,—,l;v,—,l} =u, {u,—,l;v,—,l} =E{F (t,.t,);u.v} =T, (u,v).
u u v

6.9 The Double Kashuri and Fundo Transform
Kashuri and Fundo [62] defined this double transform as below:

For a function F (tl,tz) is a function of the positive variables f,#, which has a convergent infinite series

expansion
KZ[F(II, U v] e, (u,v) J.O L tl “ 1, )dtdt,. (6.15)
We can at once deduce from (6.4) that for the setting of the parameters /11“) :;,/11(2) :%,/12“) :%,
% :7”13(1) =1= A" init we arrive at (6.15) thus showing that
U, {F(tl,tz);l iz 1l iz,l}:uz{l,iz,l 1 i 1} ICZ[F ;u,v]z ¢, (u,v).
u u Vv u u 1% V

6.10 The Double Sumudu Transform
Watugala [63] introduced the double Sumudu transform in 2002. Some other studies involving the double
Sumudu transform are [64, 65, 66]. The double Sumudu transform is defined in Tchuenche and Mbare [64] for

a function F (tl , tz) of the positive variables #,,7,, which is capable of being expanded in a convergent infinite
series, by the relation (see [64, (2.1), p.33])

SZ{F(tl,tz);u,v}zSz{u,v} :ij I

0

F( t,)dtdt,. (6.16)

1 1 1
We can see that if in (6.4) we set parameters A0 = —,ﬂ(z) = —,ﬂ(l) =— ﬂ, = —,ﬂ(l) =1=1% we get
1 u 1 u v 3 3

(6.16) to see the relation

U {F(I t ) 1 1,1;1,1,1}2112{1’1’1;% ‘1) } S {F ;M,V}:SZ{M,V}.

uu vV v u u

6.11 The Double Natural Transform
Kilicman and Omran [67] have introduced the double Natural transform and studied its relation with the double
Laplace and the double Sumudu transforms and applied it to solve partial integro-differential equations. They

define the double Natural transform for a F (tl,tz) of the positive variables f,,7, as (see, [67, (3.1), p. 1746])
N2 A{F(1.1,):(s.p)s(uv)} = Rz[ s, p)s(u,v ] J.O L PR B (ut, vt Nt dt,. (6.17)
From (6.4) we can conclude that with the choice of the parameters /11 =1,/11(2) Zl,/lfl) = S,/lfz) =

ﬂ.(l) =u, ﬂ(z) =1V in it we at once get (6.17) to see the relation
UAF (1.1,) 31, 5,u1, pov} =, {Ls,us, pvy =NT{F (1,8, )5(s, p)s(u,v)} = R [ (5, p)3 (w.v) |

6.12 The Double Ramadan Group Integral Transform
Mohamed A. Ramadan and Adel R. Hadhoud [76] introduced the Double Ramadan Group Integral Transform in

2018 as an extension to their earlier work [36]. According to them (see [76, p. 389]), for the function F (x, t )
belonging to the set A defined by
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X+t

A={F(x1):3 M.5,7,>0F (x.1)| <Me™ i=12 if (x.t)e R]

the Double Ramadan Group Integral Transform of F (x,t ) in the positive quadrant of the X —7 plane is
defined by

vx pt
RGZ[F(X,I):(s,p,u,v)]zK(s PsU,Y ——J.O J.O (x,t)dxdt  (6.18)

(see, [76, (1), p. 390]) where, s, p,u and v are complex variables, s and p are the transform variables for x
and f respectively, and u,v € (—TI,TZ) where, 7,,7, >0 and Re(s) > O,Re(p) >0.

1 s
We can now at once infer from (6.4) that for the choice of the parameters /11(1) =—,/11(2) =—,/1§1) =—,

v u
&(2) Zﬁ,ﬂz(l) = 1,2,3(2) =1 in it and by setting the variables t,=Xx,t, =t in it we obtain (6.18) thereby

- 1%

establishing the relation

L{Z{F()c,t)l > 11 P l}zuz{l,i,l,l,p } RG,[F(x.t): (s, p.u.v)]=K (s, p.u.v).
wu vy uu vy

X t
We also remark that for the choice of variables t| =—,t, =— in (6.17), it reduces immediately to (6.18)
u 1%

showing thereby that the Double Ramadan Group Integral Transform of Ramadan and Hadhoud [76] which
was introduced in 2018 is exactly identical with the Double Natural Transform of Kilicman and Omran [67]
which appeared one year earlier in the literature i.e., in 2017.

We also find it important to point out to the interested reader that some triple integral transforms of the Laplace
type as far as known till date to this author are also available in the literature. With this thing in mind we are

therefore inclined to explicitly define the special case of (6.2) corresponding to the case 7 =3 and in
conformity with the ongoing pattern of the literature we call it the Triple Upadhyaya Transform (TUT).

Definition 6.3 The Triple Upadhyaya Transform (TUT) of a function F (tl,tz,g) of three variables ¢,,1,,t,,

which is of exponential order a (a > 0) for each of the variables f,,f,,f, is denoted by

L{{F(l t t)‘ﬂ(l) 20 0. 2 2(2) 4(2). 2() 20 /1(3)}
3 1272053 o5 0%, 008 0 08, 0l 0T T 0l
and is defined by

u3{F(tptz’ts);/11(1)’/12(1)’/1(1);/1(2)’/1(2)’/1(2);/1(3)’/1(3)’/1(3)}

3 1 2 3 1 2 3

=1, {4V, 20, 20: 49, 2% 4320 29 20} (6.19)

@ = = = AR A nealn) om e )
J.o J.() J.o ¢ F(/l3 t1’/13 fz,/13 13)dlldl2dt3.

whenever this triple integral exists.

6.13 The Triple Laplace Transform
Atangana [68] introduced the triple Laplace transform in 2013 and solved the Mboctara equations which are

third order differential equations, using it. If F (tptz’%) be a continuous function of three variables then its

triple Laplace transform is defined as (see, [68, (1), p. 1 of 10]
LAF (10,1 pos.ky = fu(posi k) = [ [T e (4,1, 1, ) didtdr,  (6.20)

One more relevant reference using the triple Laplace transform is the work of Khan et al. [69] in which the two
dimensional fractional order homogeneous heat equation is solved by them. We see that (6.20) is a special case
of the triple Upadhyaya transform (TUT) (6.19) for the choice of parameters
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/11(1) 1= /11(2) — /11(3) — /13(1) — /13(2) — /13(3)’/1(1) — P,/iiz) — S,/1£3) —

2

in it which shows the expected relation between these two transforms

L{S{F(Il,tz,g);l,p,l;l,s,l;l,k,l}: u3{1,p,1;1,s,1;1,k,1} = [S{F(tl,tz,g);p,s,k}: f3(p,s,k).

6.14 The Triple Elzaki Transform
Elzaki and Mousa [70] very recently introduced the triple Elzaki transform and studied its convergence

properties and applied it to solve the Volterra integro-partial differential equation. For a function F' (t1’t2’t3)

of three positive variables 1,,f,,f, which is expressible as a convergent infinite series, the triple Elzaki

transform is defined by
bt

ES{F(tl,tz,tS);(p,s,é‘)}:Zg(p,s,é‘):psé‘j:j:jo [’J ’ SJF(tl,tz,t3)dtldt2dt3 (6.21)

provided the integral is convergent. A comparison between (6.19) and (6.21) shows that for the choice of

1 1 1
parameters ﬂ(l) = p,ﬂ(z) = S,Z(S) =0, ﬂ(l) = —,ﬂ(z) :_’1(3) :E,ﬂ(l) = ﬂ(z) = 1(3) =1 in (6.19)
1 1 1 2 p 2 S 2 3 3 3

reduces it to (6.21) to show that

1 1 1 1 1 1
u F t’t ’t 5 ’_’1;S’_’1;5’_’1 =u ’_’1;S’_’1;5’_’1
Arnnado oo gl zulp Ll o)

= E3{F(t1,t2,t3);(p,s,5)}=T3(p,s,5).

6.15 The Quadruple Laplace Transform

The quadruple Laplace transform was recently introduced by Rehman et al. [74]. In their work [74] they prove
some properties of this transform and solve some homogeneous and non-homogeneous partial differential
equations involving four variables. They define the quadruple Laplace transform for a continuous function

F(W, X, Y, Z) of four positive w, x, y,Z by the relation (see, [74, (2.1), p. 3374])

LAF (w,x,y.2);p.q.r.5} = f,(p.q.1.5)

_ L™ —( pw+qx+ry+sz)

- jo jo jo jo € F(W’x’y’z)deXdde
We mention that (6.22) is a special case of (6.2) when 1 =4 in it and for the choice of parameters

A0 =12 2@ =20 = 4@ Z 0 = 2 — 200 = 24 0 p 20 = q A0 =, 20 =
and the variables #, = w,f, = Xx,t; = y,f, = Z to show that (as expected)
UAF (w,x,y,2);L, p.sL g, LLr L s, 1} =u,{l, p,1;1g, ;1 r,1;1, 5,1}

(6.22)

=L{F(w,x,y.2);p.q.r.5}= f,(p.q.1.5).

7. THE DEGENERATE UPADHYAYA TRANSFORM
We record that the degenerate Laplace transform was introduced recently by Kim and Kim [9] in 2017. They

defined the degenerate exponential function e/tl as a function of two variables £ and f, where, (/€ (0,00) ,

te R, which is defined by (see, [9, (1.3), p. 241])

1
e, = (14 ut)x 7.1

This degenerate exponential function generalizes the classical exponential function e’ defined by the infinite

oo n

series expansion €' = Z— and buy observing that

n=0 n‘
lim ¢, = lim 1+ tﬂ— —= 7.2
H—=0+ H ,u—>()+ ,U ;I’l ( )
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On the basis of this degenerate exponential function, Kim and Kim [9] defined the degenerate Laplace
transform of a function F' (t ) be a function defined for # > Qand for it € (0, 00) by the relation (see [9, (3.1),
p.244])

Eﬂ{F(t);s}:fﬂ(s):jo (14 pt)« F(t)dt (1.3)
Kim and Kim [9] developed the theory of the degenerate Laplace transform to some extent in their work [9].

This work of Kim and Kim was extended by the present author in a series of four papers [10-13]. Corresponding
to this work of Kim and Kim we also define a degenerate version of the Upadhyaya transform here and

analogously call it the degenerate Upadhyaya transform (DUT) for a function F (t ) of a positive variable f
and for fL € (0,00) as follows:

- =8

UPLF (£): 4 A, A} =l (A, A ) = A, [ (1 ) F(A)de (7.4)
provided the integral converges, where, the superscript D in the symbols U/f) or ufj signifies the degenerate
nature of the UT in (7.4).

We can observe that in the limiting case when £ — 0 in (7.3) and (7.4) they respectively give the usual

Laplace transform and the Upadhyaya transform (2.3) respectively. We also see that the degenerate Laplace
transform (7.3) of Kim and Kim [9] is a special case of the degenerate Upadhyaya transform (7.4) because for

the choice of parameters /11 =1, ﬂz =S, /13 =1 in (7.4) it reduces to (7.3) thus showing that
D . _ D _ I
U {F ()Lt} =2 (L) = £, {F (0):5) = £, (5)
Similarly corresponding to the 7 — dimensional Upadhyaya Transform of (6.2) we define the n-Dimensional

Degenerate Upadhyaya Transform (n-DDUT) for a function F' (tl, ) of n positive variables 7,,...,f

n n

and for {1 € (0, 00) by the relation
Ul F (1t ): A0 20 20020 20 20 = ul 20,29 294" A" 2]

r ﬂa

/11()J'0 ...(n)...J':(H(1+,w) jF(ﬂfl)hv-"/13(”)%)‘1%~~dl,1.
i=1

=1

whenever the integral converges. We can at once see that in the limit as & — 0 (7.5) reduces to (6.2).

8. THE MODIFIED DEGENERATE UPADHYAYA TRANSFORM

Very recently in the month of October 2018 Kim et al. [71] introduced the modified degenerate Laplace
transform for a function F (t ) defined for £ =20 and for i€ (0,00) defined as follows ( see [71, (26), p. 4 of

8])
= =
CAF(1)isy= £, (s)= [, (1+ps)u F(t)dr. (8.1)
Corresponding to this we define the Modified Degenerate Upadhyaya Transform (MDUT) for a function F' (t )

defined for £ 20 and for (e (0, 00) by the relation

UPAF (0): A Ay A} =P (A Ao 2) = A (14 )i F(Ag) (82)

if the integral converges. We can at once notice that in the limit as £ —> O then (8.1) and (8.2) reduce to the
Laplace transform and the Upadhyaya transform (2.3) respectively. We also see it easily that for the choice of
parameters ﬂ..l = l,ﬂ.z = S,ﬂ.3 =1 in (8.2) it reduces to (8.1) thereby showing that the modified degenerate

Laplace transform of Kim et al. [71] is a special case of the modified degenerate Upadhyaya transform and the
relation between the two is

UP{F(1):Ls 1} =u) (Ls,1) =L {F(1);s}= £, (s)
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In a similar fashion corresponding to the 7 — dimensional Upadhyaya Transform of (6.2) we define the n-

Dimensional Modified Degenerate Upadhyaya Transform (n-DMDUT) for a function F (tl,...,t”) of n

positive variables ?,,...,f, and for l{ € (0, 00) by the relation

U {F(tl ot ).ﬂ(l) 20 0. A 4 ﬂ(”)}zu*D {ﬂ(l) 20 0. ) ) ﬂ(”)}

w(n) #(n) 1 2 3 1 2 3

= ’11(),'.0 (n).. L [H(Hﬂ/@ ) (ﬂfl)tl,...,ﬂf”)t”)dtl...dt”.

=1 i=1

provided the integral converges. It is obvious that as we take the limit &£ — 0 (8.3) reduces to (6.2).

9. THE UPADHYAYA TRANSFORM OF REAL MATRIX ARGUMENTS

The functions of matrix arguments find vital applications in statistics, probability, astrophysics, etc. Till date the
monograph by Mathai [14] is the most comprehensive and consolidated reference work available on this subject.
The author’s doctoral dissertation [15] also presents a comprehensive study of multiple hypergeometric

functions of matrix arguments. We consider, in this section, only the ( pX p) real symmetric positive definite
matrices, i.e. all the matrices appearing in this section of the paper are real symmetric positive definite matrices.
Referring to Mathai [14, Definition 5.2, p.255] we consider a function F (X ) which is a scalar function of a

real symmetric positive definite matrix X of order ( pX p) and a matrix T = [ :J of parameters whose
PXp

. . . 1 . . .
diagonal elements are tjj, j=1,..., p and the non-diagonal elements are —tjk, J,k =L..,p,j#* k which

satisfy the condition 7, =17 kj,Vj ,k , then for such matrices X ,T the trace of the product matrix 7X or XT
is given by (see, [14, (5.1.6), p. 255]
tr(TX ) =tr(XT) =D 1,x,. ©.1)

2k
Then we define the Laplace transform of the function F (X ) of real (symmetric positive definite) matrix
argument by the relation (see Mathai [14, (5.1.7), p.255])

T)=f,(T)=] e ™F(x)dx 2

£, (1)=1,(1)=] e ™F(X)d 02

where, tr (A) denotes the trace of the matrix A, X >0 shows that the matrix X is positive definite and the

symbol J.X o shows that the integration is carried out over the set of all positive definite matrices X and
>

X >0 means that the matrix X is positive definite. Whenever the integral in (9.2) exists it is called the

matrix argument Laplace transform of the function F ( X ) . With the same choice of the matrices X, A, as

above and the conditions imposed on the matrix A, are the same as those imposed above on the matrix 1", we

define the Upadhyaya Transform of Real (Symmetric Positive Definite) Matrix Arguments (UTRSPDMA) by the
equation

U (F (X )AL AL A =1, (ALAGA) =A™ F (XA X)X 03)
provided the integral exists. It may be mentioned here that the function F (A3X ) in (9.3) is symmetric in the

sense F(A3X) = F(A?XA:/E) = F(X%A3X%) = F(XA3) (see Mathai [14, section 6.1.3, p. 367], for

a more detailed discussion regarding the symmetry of the function of matrix argument we refer the reader to
Mathai [72, p. 515 and (1.7), p. 516]), A,,A,, A, are all real symmetric positive definite matrices of order

( pX p) and X % denotes the real symmetric positive definite square root of the matrix X and |X | denotes

the determinant of the matrix X .
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We mention that (9.3) is the matrix generalization of (2.3) for the case of functions of real symmetric positive

definite matrix arguments. When in (9.3) we choose A1 =] = A3 , (1 » being the identity matrix of order p )

and A2 =T ,itreduces to (9.2) thus showing that
UAF(X):1,.T.1,}=u, (1,.T.1,)=L,(T)=f,(T).
10. THE UPADHYAYA TRANSFORM OF COMPLEX MATRIX ARGUMENTS

For defining the Upadhyaya Transform of Complex Hermitian Positive Definite Matrix Arguments
(UTCHPDMA) we assume that all the matrices appearing in this section of the paper are ( pX p) complex

Hermitian positive definite matrices. For the theory of the functions of complex Hermitian positive definite
matrix arguments we refer the reader to the Chapter 6 of Mathai [14] and we use the same notations in this
section of the paper to denote the complex matrices as are used by Mathai in the Chapter 6 of his book [14] (see
also section 4, pp. 213-215 of [73]). Following Mathai [14, Chapter 6, pp.361-362] we consider a

( pX p) complex Hermitian matrix X of  functionally independent variables. We assume that
X = X, +iX,, where X, X, are real matrices such that X, = X{ and X, Z—X'2 , (X = )?) Further
we consider a ( pX p) complex Hermitian matrix T of parameters such that T = T, +iT,, T,,T, being real

matrices such that 7} = T1 and T, = —T2' (f = 7?) then it can be shown that (see Mathai [14, (6.1.4) p. 361])
tr(7°X ) =tr(T,X,) +tr(T, X, ) (10.1)

. ok ~ . . 1 .
Further if we assume that T = [ﬂjktjk ]pxp =(T,+iT,) where, Nu=Lj=k and 77, :E’J #k and

T=T,X= X" it follows that (see Mathai [14, (6.1.5), p. 362])
~y o~ P
tr(T°X) =Y 05+ D X+ D X (10.2)
j=1 Jj>k j>k

where 71, = (tjkl),Tz = (tjkz),X1 = (xjkl)’XZ = ('xij) (see, Matahi [14, p. 361]) . With this background,

the Laplace transform of complex Hermitian positive definite matrix argument X is defined as follows (see

Mathai [14, Definition 6.7, (6.1.6), p. 362]) for a function F (X ), which is a real valued scalar function of X :

For positive definite Hermitain matrices 7" and X of order ( pX p) and the restrictions on T as stated

above, the Laplace transform of a real valued scalar function F ()? ) is defined by,

£ (T)=1,(T)=]

X=X">0

- w(T°X ~ ~
Ak )]F(X)dX (10.3)
whenever the integral exists.
Corresponding to this, we define the Upadhyaya Transform of Complex Hermitian Positive Definite Matrix

Arguments (UTCHPDMA) for three ( pX p)complex Hermitian positive definite matrices A, A,,A; of

parameters, a function F' ( X ) , which is a real valued scalar function of the complex Hermitian positive definite

matrix X of order ( pX p) as below

u/-\E {F(X);;\p;\z’]\g} = U;\E (/~\1’/~\2’/~\3) :‘det(/~\1) J.X:Xk>0€_[[r(A§X)]F(X}/z;\3)z%)d)? (10.4)

provided the integral exists and in which ‘det(;\l)

represents the absolute value of the determinant of the

matrix A1 . It is pertinent to record here that (10.4) is the matrix generalization of (2.3) for the case of functions

of Hermitain positive definite matrix arguments. When we choose /~\1 =1 » = ]\3,;\2 =T in (10.4) it reduces

to (10.3) hence establishing that
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U AP (R, T, = (1,7.0,) =, (7)1, (7)

We also mention here that we can also define the basic extensions ( ¢ — analogues) of the one-dimensional and
n — dimensional Upadhyaya transforms, which we may call the Basic One- Dimensional Upadhyaya Transform
(BODUT) and the Basic n— Dimensional Upadhyaya Transform (BnDUT) respectively, for (2.3) and (6.2)
on similar lines by using the notations and methods of the g — calculus given in the classical work of Gasper

and Rahman [75] by using the g — exponential functions e, (Z) and E q (Z) defined respectively in (1.3.15),

p. 10 and (1.3.16), p. 11 of Gasper and Rahman [75] by the following equations in the usual notations of the
theory of the basic hypergeometric series:

oo n

z 1
e (z)=,0,(0,—q.2)= = ,z) <1 (10.5)
(=00 = T =

and
o n(n—l)/ 2

Eq(z): 0¢0(_;_;q’_z)zzq Z”:(—Z;q)w (10.6)
n=0 (q; q) n

Similarly by using the concepts of fractional calculus the Fractional Upadhyaya Transforms of one and
n — dimensions respectively can be defined for (2.3) and (6.2). It is to be noted that the Theorem 5.11,
equations (5.31), (5.32) and the Theorem 5.26 open the gateway of applications of the Upadhyaya Transform
(UT) for solving the initial value problems and the boundary value problems involving the ordinary and partial
differential coefficients arising most frequently in applied mathematics, physics, engineering and other allied
areas of study like biomathematics, biophysics, etc. We foresee that all the areas of research and possibly many
more than we can think of at present, wherever the Laplace transform and its above mentioned extant variants
are being currently applied for finding the solutions of the problems arising there, the Upadhyaya transform will
be used most extensively in the coming years and the results developed in this paper and the various
generalizations of the Upadhyaya transform pointed out here will be developed by us and other researchers
around the world and all these proposed works will find the maximum possible applications in the coming years.
With this highly optimistic vision about the future scope of this work we conclude the paper and also remark
that our future communications will focus on these subjects and various other possible applications and the
author most humbly invites all the respected readers and researchers worldwide to extend this work, generalize
it and apply it as extensively as possible so that together we all the researchers of the worldwide mathematics
community make the Upadhyaya Transform an everlasting tool in the mathematical arena, a powerful tool
whose potential powers of applications are yet to be expounded by all of us!
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