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1 Introduction

Let D = {z € C: |z| < 1} be the open unit disk in the complex plane C. Let H(ID) is the class of all
analytic functions in .
Now, we give some definitions which we will use in this paper.

Let f be an analytic self-map of the unit disk . The Bloch space is defined as (see [9-11]).
Definition 1.1. Let 0 < a < 0co. The a-Bloch space , B,, is defined by

Boi={f € HD): |flls. = sup(1 = |)"|f' ()] < oc}.
The little a-Bloch space , B0, is given by the following

Baoi={f € HD): | flls., = lim (1-[s)*If ()] =0}.

Definition 1.2. Let Z denote the space of all f € (H(D)) N (C(D)) f € Z if and only if
sup (1 — [2[*)|f"(2)] < 0.
z€D

Hence, the following relation holds:

1£1lz = sup (1 — [2*)]f"(2)| < co.
z€D

* Communicated, edited and typeset in Latex by Lalit Mohan Upadhyaya (Editor-in-Chief).
Received February 18, 2019 / Revised September 19, 2019 / Accepted October 24, 2019. Online First
Published on December 24, 2019 at https://www.bpasjournals.com/.

Corresponding author A. Kamal, E-mail: alaa_mohamed1@yahoo.com , alaa_kamal@sci.psu.edu.eg


https://www.bpasjournals.com/

Isometries of differentiation ... 593

For more information on Zygmund type spaces and some operators on them can be found in ( see
[2,6-8]).
The little Zygmund space Zy was introduced by Li and Stevié in (see [5]) as the following :

f €20 lim |(1- [N (2)] = 0.

Definition 1.3. (see [3]) For any analytic self-mapping ¢ of D the symbol ¢ induces a linear composition
operator Cy(f) := f o ¢ from H(D) into itself.

Now, we will show the definition of the products of composition operators followed by differentiation
operator which defined in (see [4]) as follows:

Definition 1.4. The differentiation operator D is defined by Df = f’, while the operators DCy are
defined by DCy(f) = (f o ¢)’ = f'(¢)¢’. And operators C Dy are defined by CyD(f) = f o ¢ = f'().

The Hardly space can be defined as follows see ( [12]).

Definition 1.5. The space H> denotes the space of all bounded analytic functions f on the unit disk
D such that

[[flloe = sup[f(2)] < oo. (1.1)
z€D

Definition 1.6. Let X and Y be two Banach spaces, recall that a linear isometry is a linear operator
T from X to Y such that

T flly = [1£1lx-
2  Auxiliary results

In this section, we will introduce some notation and state a couple of lemmas which are used to prove
the main results.

For a € D and z € D, the definition of involution ¢, which interchanges the origin and point a, is
defined as

a—z
for z € D.

pel2) = T

The definition of pseudo-hyperbolic distance between z and w where z,w in € D is given by

p(z,w) = [p:(w)| =

z—w
1—zw|

and the hyperbolic metric is given by

. g _ 1, 1+p(zw)
Blaw) —“fA T IeF 2 BT p(w)’

where v is any piecewise smooth curve in D from z to w.
Now, we list up following two lemmas which are needed to prove our main results.
The first lemma is introduced in (see [13]).

Lemma 2.1. For all z,w € D we have

(1= |=)(1 — Jwf?)
1— zwp?

1- pQ(Z7w) =

For, ¢ € S(D) the Schwarz-Pick lemma shows that p(¢(z), p(w)) < p(z,w) w), and if equality holds
for some z # w, then ¢ is an automorphism of the disk. It is also well known that for¢ € S(D),Cy is
always bounded on B.

From (see [1]) and by making a little modification of Lemma 2.1 we get the following lemma.
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Lemma 2.2. There exists a constant C > such that
=17 G) = (0 ) ()] < Cllllplew),

for all z,w €D and f € B.

'(1 ) - (- \w|2>f”<w>\ < O|If||z-plzw),
for all z,w e D and f € Z.

Lemma 2.3. (see( [9])) Assume that f € H*. Then for each n € N, there is a positive constant C
independent of f such that

sup (1= [z )" [ f™(@) [ < C N f o -

z€D

In this paper, we will denote to the letter C as a positive constant.

3 The isometries of (DCyf)(z) : Z — Z

In this section, we characterize the operators (DCysf)(2) : £ — Z. Moreover, we give the conditions
which prove the isometries of the operators (DCy f)(2).

Theorem 3.1. Let ¢ be analytic self-maps of the unit disk then, the operator (DCyf)(2) is an isometry
in the seminorm if and only if the following conditions hold.

(4)
(1— |)6° ()]
A e
(2P )6
WA 6P S
and

qup A= RS @

zen (1=1o(x)]?)  —

(B) For every a € D, there ezists at least a sequence {zn} in D such that

lim p(¢p(zn),a) = 0.

And
= PR
L Y T ER
(= P )l ()
1 —
e R Y 1E)] b
and

o (6]
B oo )
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Proof. First, We will prove the sufficiency.By condition (A), for every f € Z, we have

I(DCs ) (2)ll2

+

<

= s (/e ¢>'(z>)"
= sup(i— [2f) (f’(qﬁ(z))qﬁ’(Z))H

= sup(l— )62 (6(2)) + <z>”<z)f’(¢(z)>]

z€D

= sup(l—[z[") -¢'3(Z)f”'(¢(2)) +2¢'(2)¢" (2)f" (6(2))

zeD

) (6:) + ¢“<z>¢'<z>f”<¢<z>>}

= sup(l—[z[") -¢'3(Z)f’”(¢(2)) +3¢'(2)¢" (2)f" (6(2))

+ ") f (¢(2))

sup(1 = |#*)|¢” ()| 11" (#(2)]

sup 3(1— 2" ()16 (21" (¢(2)]
ilelg(l — 218" (2)If (6(2)]

IN

+ o+

(L= 12" » —1o(2)]2)3
up Sy e @10~ 9

o 3= 11
U 1= [6(2)?)
QPO e
sup LS o)l - 100 )
(1= 12P)6° ()
i e e
o 3= 110
U 1= [62) )
(1 2P)l¢"”(2)]
B pem Ve
1 7lleo + 111z + 17115

7 6(2)11 = 16()1?)

£z

Now, we will show that property (B) implies ||(DCysf)(2)||z > |If]|=z-
In fact, given any f € Z, then

and

for some sequence {a,, C D}.

1711z = Tim (1= lam[*)|f" (@n)],

1lloe = Tim (1= Jam[)F" (@),

1/ls = lim (1 —|am|*)[f (am)],

For any fixed m, it follows from (B) that there is a sequence {z* C D} such that

p(o(zi"),

301 — [z

(1= [z [*)]e" (=)
(1 —1lo(z)?)?
)lg” ()11 (2]

am) — 0,

— 1,

(1 — |22 1)e" (zi)]

(1= lo(z)1?)

— 1 and — 1,

(1= lo(z)I1?)
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as k — oo By Lemma 2.2, for all m and k,

(A== " (=) — (1 = IamIQ)f”(am)’ < Cllfllz-p(2" s am),

(1=l (=5") — (1~ Iamlz)f’(am)‘ < Cllflls-p(zi"; am).

Hence,
(L= 1)) (= 2 1L = lam]*) S (@m)] = Cll flloo-p(21"s am),
(L= 1o (= 2 1L = lam]*) £ (am)| = Cllf | z-p(21" s am),
(L= 1)) f (2] 2 1A = lam|*) ' (am)] = ClIfl|5-p(2K" s am).-
Therefore,

(=12} pmr 5 —l(2)]2)3
I(DCs ) (2)ll2 U G ) 177 (@)1 = [e(2)]7)

B P OIS
R e e I COIEOID

=12 @ 11— 162
+ U R [F(#(2)[(1 = 1o(2)]7)

A= PSS s
> Jim sup S A (DI~ 0GR P)

31— [z *)le" (zi)l¢' (2i7)

4+  lim sup
k— o0

A= 12N N g my (1 — (Y 2
+  lim sup - JoP) | (P21 = |p(zi")7)

= (1= lam[)f" (@m)| +3(1 = lam ") (@m)| + (1= |am|*)|f (am)]-

The inequality |[(DCsf)(2)||z > ||f||z follows by letting m — 0.

(=l " (23 — (1 — Iam\Q)f"'(am)‘ < Ollflloo-p(zi", am),

| " m _ m 5
(1—lo(zm)1?) 17 (e ()| (1 = |9 (z)]7)

(3.3)

(3.4)

(3.5)

From the above, we have |[(DCy f)(2)||z = ||f]|z,which means that (DCyf)(z) is an isometry operator

on the Zygmund type space.

Now, we prove will the necessity. For any a € D, we will begin by taking the following test function

fa(z) _ (1_ |a| )

a(l —laz|)’
It is clear that )
fie) = o
120 = TR = o e = O e
e S0 —laf) | 6a (1 —laP) _ (1= laf)

(I—lazh)* ~ (I—faz]? (L —Taz)> ~ ~ (1 —laz)*’
Using Lemma 2.1, we have

PN _ (- |Z|2)(1 - |a|2) _ 2
(1= P = S Lt = 0 ),

A Py = oL OOl _ oy g ),

(1—az)?

(3.6)
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and

A- [P =C =C(1-p’(a,2)).

So,

and

Moreover, since

and

(L[ —|al*)

(1—az)?

1f1l5 = sup(1 — |2[*)| fa(2)] < 1,
z€D

1£llz = sup(1 — [2*)|f (=) <1,
zeD

[If oo = sup(l = [2[*)| fa" (2)] < L.
2€D

(1 —al*)(@ — |a]*)
(1—1af?)?

a7 (a) = (- |a|2)(1 - |a|2) _
(1= laf)fie) = S0l

(1 —lal*)Ifi(a) =

=1,

(L —|al*)(A —|al*)

(1~ la)If" (@) = =1,

(1 —a]?)?

we have ||f||z = 1. By isometry assumption, for any a € D, we obtain

5 =

+

+

lfs@llz = I(DCs foa)ll 2
igg (1_ |¢(Z)|2)3 (1 |¢( )| ) |f¢(a)|
o 30 D))
€D (1=1¢(2)?)
=1z g 1ueniyg
sup L ENE N o
(1_ ‘¢(a)|2)3 (1 |¢( )‘ ) |f¢(a)‘
3(1 - |a|2)|¢"(a)||¢/(a)|(
(1 —1¢(a)l?)
(1= oIS @] oy 5
(1 — ‘¢(a)|2) (1 |¢( )‘ )‘f(b(a)'
(1 —la[*)|¢"(a)|
(1—1¢(a)?)®
3(1—|af*)|¢" (a)l|¢’ (a)]
(1 —1¢(a)]?)
(1 —a]*)|¢" (a)]
(I=lp(@)?) -

(1= 1¢(2) ") £

1= [¢(a)*)|ffa)]

Hence A follows by noticing that a is arbitrary.
Since ||DCygfallz = ||fallz = 1 there exists a sequence z,, C D such that

(1—|zm

?) d(DCy f4(a))
dzm

(zm)| = (L= lzml)I¢" (zm)lIf2" ((zm))]

+ 31— [z )¢ (zm) 16 (zm) 112 ($(zm) )|

+ (L= [z (zm) 1 fa(S(zm)))

— 5,

(3.8)

(3.10)
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as m — oQ.

(1= 1zml®) (8" GEm)lIfd (b(zm))]
— (1 — |Z’m|2)|¢,3(’zm)| o p 2\3| p1/ 2
- (1 _ |¢(Zm)|2)3 (1 |¢( m)| ) ‘fa (()b( m))'

< (1= 16(zm) ") (& (zm). (3.11)

(= Jzl®) 10 )16 (ol (6())
B e A D U CCH PR
- sy (1= [6(m) P (8(zm)|

< (1= 1@(zm) )| f2 (d(2m))]. (3.12)

(L= lzm[*) & (2m)llfa(d(zm))]
B R P L | PN
- (1 _ |¢(Zm)|2) (1 |¢( m)l )‘fa(¢( m))‘
< (1 = [¢(zm)*) | fa(d(zm))]- (3.13)

By combining (3.11),(3.12),(3.13) and (3.10), it follows that

1< Tim inf(1 = [¢(zm) ")’ | £ (6(2m)]
< Jim sup(1— [@(zm)[*)* 112" (é(zm)]- (3.14)

1< lim inf(1—[¢(zm)[*)If2 (9(zm)]

< lim sup(L = [¢(zm)*) ]2 (9(zm)]- (3.15)
1< lim inf(1 = |¢(zm)[*)] fi(6(2m)]

< limsup(1— [$(zm)2)|f2(é(zm)| (3.16)
The last inequality follows (3.7) since ¢(zm) € D. Consequently,
(1= 1p(zm)*)?|£2" ($(zm)| = (1 = p*($(2m), @),
(1= [¢(zm) ) f2 (D(2m)| = (1 = p*($(2m), @),

lim
m—» o0
lim
m— o0

and
im (1= [¢(zm)*)fa($(zm)| = (1 = p*((2m), @) (3.17)

That is,
lim (p(¢(2m),a)) = 0.

m—r o0
By combining (3.10), (3.11), (3.12), (3.13) and (3.17), we know that
_ 24( 473
g (L= nl®)lg" )
m—oo (1 —[p(zm)[?)

b (= e PG )16 (o) _ |
miee (1= 16(m)?) ’

=1,

and

(1 —Jzm|")|¢" (zm)| _

lim =1 (3.18)

m=oo (1 —[p(zm)]?)
This completes the proof of theorem. O
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Theorem 3.2. Let ¢ be analytic self-maps of the unit disk, such that ¢ fizes the origin, then the
operator CyD : Z — Z is an isometry in the seminorm if and only if the following conditions hold.

(©)
(1 —[[)]9"(2)|
3

ST e S
(1— |52)1¢" ()]
WA leap) - ¢

(D) For every a € D, there exists at least a sequence {zn} in D such that
lim p(¢(2n),a) =0,
n— oo

and

A P )] _
B R v 16

_ 2 /1
i (L= Lo )6 )
n—oo (1 —|¢(zn)[?)
Proof. First, we will prove the sufficiency. By condition (C), for every f € Z, we have

ICoDNE)l= = sup(1—|z|2>(f'<¢<z>>)

zeD

/

— sup(1— 1) |4/ () (02|

z€D

= sup(1 = #9621 (60:) + 6 () (0(2)

< sup(l- |21*)1¢™ ()1 (6(2)]

+ sup(l - 218" ()1 ($(2)]

4 sup B DI 2(;)|\f"(¢(2)|(1*|¢(Z)|2)

o A EPIRC)
P e
sup (1_ ‘Zl )|¢ (Z)|HfHZ

zep (1—[9(2)?)
[flleo + [1£1]2- (3.19)

Now, we will prove that property (D) implies ||(CyDf)(2)|lz > ||f]|=-
In fact, given any f € Z, then

IN -+

171z = Tim (1= Jam[*)|f" (@n)],

1lloe = Tim (1= fam )" (am)],

for some sequence {a,, C D}. For any fixed m, it follows from (B) that there is a sequence {z;" C D}
such that

(1= [z ")l (=)
(1= le()P)?

— 1, (3.20)

p(d(zk"), am) = 0,

(L — |2 )" (=)
(1= lo(z)I1?)

— 1,
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as k — oo. By Lemma 2.2, for all m and k,

‘(1 — (=) " (9(2)i") — (1 — Iam|2)3f'”(am)‘ < COllflloo-p(zi", am),

\(1 P G — (1 — \amF)f”(am)\ < Ol |lz-p(" am)- (3.21)
Hence,
(1= [ () 2 (1~ [am )™ (@m)] — Cllflloo-p(l @),
(1= (6D @) = 11— lam ) (@m)] — ClIfllz 0 am). (3.22)
Therefore,
CDHENz = sup SIS @ iy o)

zen (1=19(2))?)
(1= 128" ()| o . ()2
M S sum et (@(2)|(1 = [o(2)[7)
(L — 29 (21
(1 —1o(z)1%)?
(L= 22" ()] g o —1(2m™)|2
= (1= lam[))If" (@m)l + (1 = lam[*)|f" (am)|- (3.23)

The inequality |[(Ce,Df)(2)||z > ||f||z follows by letting m — oo.
For any a € D, and we will use the same test function f, defined by (3.6) which satisfies ||fa|| = 1. By
isometry assumption, for any a € D, we have

2 = |fsllz =1(CoDfsa))llz

- zeg (17 ‘¢(Z)|2)3 (1 ‘()b( )| ) ‘fd)(a)(()b( ))'

(1- \z|2)\¢“(z)|(

L I — oG )

> lim sup
k— o0

+  lim sup
k—oo

+ sup ST o) 000
> Gl - 16 P o o)
v @lelO@l a2 (6(2))]

(1 —1[o(a)l?)
(1= la]*)|¢"(a)]

(1— Jap)|é" (a)
Z 1= e@)P)?

(1—=lé(a)) -

Jr

(3.24)
Hence, C follows by noticing a is arbitrary.
Since [|Cy D fallz = ||fallz = 2 there exists a sequence {z,,} C D such that
d(C¢Df¢ a ) / "
(1= lam )| T2 )| = (= fam 2 )12 (@)
+ (1= |zml*)e" (zm)lIFS ($(2m))]
- 2 (3.25)

as m — Q.

(1= 1lzml®) (8”2 GEn)lIf (b(zm)]
_ (1 — |Zm|2)|¢,2(zm)| _ p 2\3| p1/ 2
- (1 7 |¢(2m)|2)3 (1 |¢( m)' ) ‘fa (()b( m))'

(1= 16(zm) ") 12 ($(2m)]. (3.26)

IA
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(1=12ml?)  |¢" (zm)|Ifa (6(zm))]
_ (1 - ‘Zm‘2)|¢”(zm)| _ P 2 7 2
- (1 —|p(zm)|?) (1 — [@(zm) )| fa (d(2m))]
< (1= |¢(zm) ) fa (B(2m))]- (3.27)

By combining (3.26),(3.27) and (3.25), it follows that

1< dim inf(1—[¢(em)*)*|f2" ((zm)]

< dim sup(l—|¢(zm)[*)°1f2 (9(2m)]. (3.28)
Lo< o T inf(L— [¢(zm) )| £ (é(2m)]

< dimsup(l = [¢(zm) )£ ($(zm)]- (3.29)
The last inequality follows (3.7) since ¢(zm) € D. Consequently,
Jim (1= [¢(zm)*)° 1S (9(zm)| = (1 = p*(d(2m), ),
and
im (1= [¢(zm) P (S(zm)| = (1= p*(8(2m), @) (3-30)
That is,

lim (p(¢(2m), a)) = 0.

m—r0o0
By combining (3.25), (3.26), (3.27) and (3.30), we know that

i (L= 2182 Cn)|
N e D E.

and
(L= [zm[*)]9" (2m)|
lim =1 (3.31)
m=oo (1 —[¢(zm)[?)
From the above results follows the proof of theorem is completed. O
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