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1 Introduction

Let D = {z ∈ C : |z| < 1} be the open unit disk in the complex plane C. Let H(D) is the class of all
analytic functions in D.
Now, we give some definitions which we will use in this paper.

Let f be an analytic self-map of the unit disk D. The Bloch space is defined as (see [9–11]).

Definition 1.1. Let 0 < α < ∞. The α-Bloch space ,Bα, is defined by

Bα := {f ∈ H(D) : ‖f‖Bα
= sup

z∈D

(1− |z|2)α|f ′(z)| < ∞}.

The little α-Bloch space ,Bα,0, is given by the following

Bα,0 := {f ∈ H(D) : ‖f‖Bα,′
= lim

|z|→1−
(1− |z|2)α|f ′(z)| = 0}.

Definition 1.2. Let Z denote the space of all f ∈ (H(D)) ∩ (C(D̄)) f ∈ Z if and only if

sup
z∈D

|(1− |z|2)|f ′′(z)| < ∞.

Hence, the following relation holds:

||f ||Z ≍ sup
z∈D

|(1− |z|2)|f ′′(z)| < ∞.
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For more information on Zygmund type spaces and some operators on them can be found in ( see
[2, 6–8]).
The little Zygmund space Z0 was introduced by Li and Stević in (see [5]) as the following :

f ∈ Z0 ⇔ lim
|z|→1

|(1− |z|2)|f ′′(z)| = 0.

Definition 1.3. (see [3]) For any analytic self-mapping φ of D the symbol φ induces a linear composition
operator Cφ(f) := f ◦ φ from H(D) into itself.

Now, we will show the definition of the products of composition operators followed by differentiation
operator which defined in (see [4]) as follows:

Definition 1.4. The differentiation operator D is defined by Df = f ′, while the operators DCφ are
defined by DCφ(f) = (f ◦ φ)′ = f ′(φ)φ′. And operators CDφ are defined by CφD(f) = f ′ ◦ φ = f ′(φ).

The Hardly space can be defined as follows see ( [12]).

Definition 1.5. The space H∞ denotes the space of all bounded analytic functions f on the unit disk
D such that

||f ||∞ = sup
z∈D

|f(z)| < ∞. (1.1)

Definition 1.6. Let X and Y be two Banach spaces, recall that a linear isometry is a linear operator
T from X to Y such that

||Tf ||Y = ||f ||X .

2 Auxiliary results

In this section, we will introduce some notation and state a couple of lemmas which are used to prove
the main results.
For a ∈ D and z ∈ D, the definition of involution φa which interchanges the origin and point a, is
defined as

ϕa(z) :=
a− z

1− āz
, for z ∈ D.

The definition of pseudo-hyperbolic distance between z and w where z, w in ∈ D is given by

ρ(z, w) = |ϕz(w)| =

∣

∣

∣

∣

z − w

1− z̄w

∣

∣

∣

∣

,

and the hyperbolic metric is given by

β(z, w) = inf
γ

∫

γ

dξ

1− |ξ|2
=

1

2
log

1 + ρ(z, w)

1− ρ(z, w)
,

where γ is any piecewise smooth curve in D from z to w.
Now, we list up following two lemmas which are needed to prove our main results.
The first lemma is introduced in (see [13]).

Lemma 2.1. For all z, w ∈ D we have

1− ρ
2(z, w) =

(1− |z|2)(1− |w|2)

|1− z̄w|2
.

For, φ ∈ S(D) the Schwarz-Pick lemma shows that ρ(φ(z), φ(w)) ≤ ρ(z, w) w), and if equality holds
for some z 6= w, then φ is an automorphism of the disk. It is also well known that forφ ∈ S(D), Cφ is
always bounded on B.
From (see [1]) and by making a little modification of Lemma 2.1 we get the following lemma.



594 A. Kamal and M. Hamza. Eissa

Lemma 2.2. There exists a constant C > such that

∣

∣

∣

∣

(1− |z|2)f ′(z)− (1− |w|2)f ′(w)

∣

∣

∣

∣

≤ C||f ||B.ρ(z, w),

for all z, w ∈ D and f ∈ B.

∣

∣

∣

∣

(1− |z|2)f ′′(z)− (1− |w|2)f ′′(w)

∣

∣

∣

∣

≤ C||f ||Z .ρ(z, w),

for all z, w ∈ D and f ∈ Z.

Lemma 2.3. (see( [9])) Assume that f ∈ H∞. Then for each n ∈ N, there is a positive constant C
independent of f such that

sup
z∈D

(1− | z |)n | f (n)(z) | ≤ C ‖ f ‖∞ .

In this paper, we will denote to the letter C as a positive constant.

3 The isometries of (DCφf)(z) : Z → Z

In this section, we characterize the operators (DCφf)(z) : Z → Z. Moreover, we give the conditions
which prove the isometries of the operators (DCφf)(z).

Theorem 3.1. Let φ be analytic self-maps of the unit disk then, the operator (DCφf)(z) is an isometry
in the seminorm if and only if the following conditions hold.
(A)

sup
z∈D

(1− |z|2)|φ′3(z)|

(1− |φ(z)|2)3
≤ 1,

sup
z∈D

(1− |z|2)|φ′′(z)||φ′(z)|

(1− |φ(z)|2)
≤ 1

and

sup
z∈D

(1− |z|2)|φ′′′(z)|

(1− |φ(z)|2)
≤ 1.

(B) For every a ∈ D, there exists at least a sequence {zn} in D such that

lim
n→∞

ρ(φ(zn), a) = 0.

And

lim
n→∞

(1− |z|2)|φ′3(zn)|

(1− |φ(zn)|2)3
= 1,

lim
n→∞

(1− |z|2)|φ′′(zn)||φ
′(zn)|

(1− |φ(zn)|2)
= 1,

and

lim
n→∞

(1− |z|2)|φ′′′(zn)|

(1− |φ(zn)|2)
= 1.
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Proof. First, We will prove the sufficiency.By condition (A), for every f ∈ Z, we have

||(DCφf)(z)||Z = sup
z∈D

(1− |z|2)

(

(f ◦ φ)′(z)

)′′

= sup
z∈D

(1− |z|2)

(

f
′(φ(z))φ′(z)

)′′

= sup
z∈D

(1− |z|2)

[

φ
′2(z)f ′′(φ(z)) + φ

′′(z)f ′(φ(z))

]′

= sup
z∈D

(1− |z|2)

[

φ
′3(z)f ′′′(φ(z)) + 2φ′(z)φ′′(z)f ′′(φ(z))

+ φ
′′′(z)f ′(φ(z)) + φ

′′(z)φ′(z)f ′′(φ(z))

]

= sup
z∈D

(1− |z|2)

[

φ
′3(z)f ′′′(φ(z)) + 3φ′(z)φ′′(z)f ′′(φ(z))

+ φ
′′′(z)f ′(φ(z))

]

≤ sup
z∈D

(1− |z|2)|φ′3(z)||f ′′′(φ(z)|

+ sup
z∈D

3(1− |z|2)|φ′′(z)||φ′(z)||f ′′(φ(z)|

+ sup
z∈D

(1− |z|2)|φ′′′(z)||f ′(φ(z)|

= sup
z∈D

(1− |z|2)|φ′3(z)|

(1− |φ(z)|2)3
|f ′′′(φ(z)|(1− |φ(z)|2)3

+ sup
z∈D

3(1− |z|2)|φ′′(z)||φ′(z)|

(1− |φ(z)|2)
|f ′′(φ(z)|(1− |φ(z)|2)

+ sup
z∈D

(1− |z|2)|φ′′′(z)|

(1− |φ(z)|2)
|f ′(φ(z)|(1− |φ(z)|2)

= sup
z∈D

(1− |z|2)|φ′3(z)|

(1− |φ(z)|2)3
||f ||∞

+ sup
z∈D

3(1− |z|2)|φ′′(z)||φ′(z)|

(1− |φ(z)|2)
||f ||Z

+ sup
z∈D

(1− |z|2)|φ′′′(z)|

(1− |φ(z)|2)
||f ||B

≤ ||f ||∞ + ||f ||Z + ||f ||B. (3.1)

Now, we will show that property (B) implies ||(DCφf)(z)||Z ≥ ||f ||Z .
In fact, given any f ∈ Z, then

||f ||Z = lim
m→∞

(1− |am|2)|f ′′(am)|,

||f ||∞ = lim
m→∞

(1− |am|2)|f ′′′(am)|,

and
||f ||B = lim

m→∞
(1− |am|2)|f ′(am)|,

for some sequence {am ⊂ D}.
For any fixed m, it follows from (B) that there is a sequence {zmk ⊂ D} such that

ρ(φ(zmk ), am) → 0,
(1− |zmk |2)|φ′3(zmk )|

(1− |φ(zmk )|2)3
→ 1,

3(1− |zmk |2)|φ′′(zmk )||φ′(zmk )|

(1− |φ(zmk )|2)
→ 1 and

(1− |zmk |2)|φ′′′(zmk )|

(1− |φ(zmk )|2)
→ 1, (3.2)
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as k → ∞ By Lemma 2.2, for all m and k,
∣

∣

∣

∣

(1− |φ(zmk )|2)3f ′′′(zmk )− (1− |am|2)f ′′′(am)

∣

∣

∣

∣

≤ C||f ||∞.ρ(zmk , am),

∣

∣

∣

∣

(1− |φ(zmk )|2)f ′′(zmk )− (1− |am|2)f ′′(am)

∣

∣

∣

∣

≤ C||f ||Z .ρ(z
m
k , am),

∣

∣

∣

∣

(1− |φ(zmk )|2)f ′(zmk )− (1− |am|2)f ′(am)

∣

∣

∣

∣

≤ C||f ||B.ρ(z
m
k , am). (3.3)

Hence,

|(1− |φ(zmk )|2)3f ′′′(zmk )| ≥ |(1− |am|2)f ′′′(am)| − C||f ||∞.ρ(zmk , am),

|(1− |φ(zmk )|2)f ′′(zmk )| ≥ |(1− |am|2)f ′′(am)| − C||f ||Z .ρ(z
m
k , am),

|(1− |φ(zmk )|2)f ′(zmk )| ≥ |(1− |am|2)f ′(am)| − C||f ||B.ρ(z
m
k , am). (3.4)

Therefore,

||(DCφf)(z)||Z = sup
z∈D

(1− |z|2)|φ′3(z)|

(1− |φ(z)|2)3
|f ′′′(φ(z)|(1− |φ(z)|2)3

+ sup
z∈D

3(1− |z|2)|φ′′(z)||φ′(z)|

(1− |φ(z)|2)
|f ′′(φ(z)|(1− |φ(z)|2)

+ sup
z∈D

(1− |z|2)|φ′′′(z)|

(1− |φ(z)|2)
|f ′(φ(z)|(1− |φ(z)|2)

≥ lim
k→∞

sup
(1− |zmk |2)|φ′3(zmk )|

(1− |φ(zmk )|2)3
|f ′′′(φ(zmk )|(1− |φ(zmk )|2)3

+ lim
k→∞

sup
3(1− |zmk |2)|φ′′(zmk )||φ′(zmk )|

(1− |φ(zmk )|2)
|f ′′(φ(zmk )|(1− |φ(zmk )|2)

+ lim
k→∞

sup
(1− |zmk |2)|φ′′′(zmk )|

(1− |φ(zmk )|2)
|f ′(φ(zmk )|(1− |φ(zmk )|2)

= (1− |am|2)|f ′′′(am)|+ 3(1− |am|2)|f ′′(am)|+ (1− |am|2)|f ′(am)|.

(3.5)

The inequality ||(DCφf)(z)||Z ≥ ||f ||Z follows by letting m → 0.

From the above, we have ||(DCφf)(z)||Z = ||f ||Z ,which means that (DCφf)(z) is an isometry operator
on the Zygmund type space.
Now, we prove will the necessity. For any a ∈ D, we will begin by taking the following test function

fa(z) =
(1− |a|2)

a(1− |āz|)
. (3.6)

It is clear that

f
′
a(z) =

1− |a|2

(1− |āz|)2
,

f
′′
a (z) =

2a(1− |a|2)

(1− |āz|)3
=

(1− |a|2)

(1− |āz|)2
.

2a

(1− |āz|)
= C

(1− |a|2)

(1− |āz|)2
,

and

f
′′′
a (z) =

6a2(1− |a|2)

(1− |āz|)4
=

6a2

(1− |āz|)2
.
(1− |a|2)

(1− |āz|)2
= C

(1− |a|2)

(1− |āz|)2
.

Using Lemma 2.1, we have

(1− |z|2)|f ′
a(z)| =

(1− |z|2)(1− |a|2)

(1− āz)2
= (1− ρ

2(a, z)),

(1− |z|2)|f ′′
a (z)| = C

(1− |z|2)(1− |a|2)

(1− āz)2
= C(1− ρ

2(a, z)),
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and

(1− |z|2)|f ′′′
a (z)| = C

(1− |z|2)(1− |a|2)

(1− āz)2
= C(1− ρ

2(a, z)). (3.7)

So,

||f ||B = sup
z∈D

(1− |z|2)|f ′
a(z)| ≤ 1,

||f ||Z = sup
z∈D

(1− |z|2)|f ′′
a (z)| ≤ 1,

and

||f ||∞ = sup
z∈D

(1− |z|2)|f ′′′
a (z)| ≤ 1. (3.8)

Moreover, since

(1− |a|2)|f ′
a(a) =

(1− |a|2)(1− |a|2)

(1− |a|2)2
= 1,

(1− |a|2)|f ′′
a (a) =

(1− |a|2)(1− |a|2)

(1− |a|2)2
= 1

and

(1− |a|2)|f ′′′
a (a) =

(1− |a|2)(1− |a|2)

(1− |a|2)2
= 1,

we have ||f ||Z = 1. By isometry assumption, for any a ∈ D, we obtain

5 = ||fφ(a)||Z = ||(DCφfφ(a))||Z

= sup
z∈D

(1− |z|2)|φ′3(z)|

(1− |φ(z)|2)3
(1− |φ(z)|2)3|f ′′′

φ(a)|

+ sup
z∈D

3(1− |z|2)|φ′′(z)||φ′(z)|

(1− |φ(z)|2)
(1− |φ(z)|2)|f ′′

φ(a)|

+ sup
z∈D

(1− |z|2)|φ′′′(z)|

(1− |φ(z)|2)
(1− |φ(z)|2)|f ′

φ(a)|

≥
(1− |a|2)|φ′3(a)|

(1− |φ(a)|2)3
(1− |φ(a)|2)3|f ′′′

φ(a)|

+
3(1− |a|2)|φ′′(a)||φ′(a)|

(1− |φ(a)|2)
(1− |φ(a)|2)|f ′′

φ(a)|

+
(1− |a|2)|φ′′′(a)|

(1− |φ(a)|2)
(1− |φ(a)|2)|f ′

φ(a)|

≥
(1− |a|2)|φ′3(a)|

(1− |φ(a)|2)3

+
3(1− |a|2)|φ′′(a)||φ′(a)|

(1− |φ(a)|2)

+
(1− |a|2)|φ′′′(a)|

(1− |φ(a)|2)
. (3.9)

Hence A follows by noticing that a is arbitrary.
Since ||DCφfa||Z = ||fa||Z = 1 there exists a sequence zm ⊂ D such that

(1− |zm|2)

∣

∣

∣

∣

d(DCφfφ(a))

dzm
(zm)

∣

∣

∣

∣

= (1− |zm|2)|φ′3(zm)||f ′′′
a (φ(zm))|

+ 3(1− |zm|2)|φ′′(zm)||φ′(zm)||f ′′
a (φ(zm))|

+ (1− |zm|2)|φ′′′(zm)||f ′
a(φ(zm))|

→ 5, (3.10)
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as m → ∞.

(1− |zm|2) |φ′3(zm)||f ′′′
a (φ(zm))|

=
(1− |zm|2)|φ′3(zm)|

(1− |φ(zm)|2)3
(1− |φ(zm)|2)3|f ′′′

a (φ(zm))|

≤ (1− |φ(zm)|2)3|f ′′′
a (φ(zm)|. (3.11)

(1− |zm|2) |φ′′(zm)||φ′(zm)||f ′′
a (φ(zm))|

=
(1− |zm|2)|φ′′(zm)||φ′(zm)|

(1− |φ(zm)|2)
(1− |φ(zm)|2)|f ′′

a (φ(zm))|

≤ (1− |φ(zm)|2)|f ′′
a (φ(zm))|. (3.12)

(1− |zm|2) |φ′′′(zm)||f ′
a(φ(zm))|

=
(1− |zm|2)|φ′′′(zm)|

(1− |φ(zm)|2)
(1− |φ(zm)|2)|f ′

a(φ(zm))|

≤ (1− |φ(zm)|2)|f ′
a(φ(zm))|. (3.13)

By combining (3.11),(3.12),(3.13) and (3.10), it follows that

1 ≤ lim
m→∞

inf(1− |φ(zm)|2)3|f ′′′
a (φ(zm)|

≤ lim
m→∞

sup(1− |φ(zm)|2)3|f ′′′
a (φ(zm)|. (3.14)

1 ≤ lim
m→∞

inf(1− |φ(zm)|2)|f ′′
a (φ(zm)|

≤ lim
m→∞

sup(1− |φ(zm)|2)|f ′′
a (φ(zm)|. (3.15)

1 ≤ lim
m→∞

inf(1− |φ(zm)|2)|f ′
a(φ(zm)|

≤ lim
m→∞

sup(1− |φ(zm)|2)|f ′
a(φ(zm)|. (3.16)

The last inequality follows (3.7) since φ(zm) ∈ D. Consequently,

lim
m→∞

(1− |φ(zm)|2)3|f ′′′
a (φ(zm)| = (1− ρ

2(φ(zm), a)),

lim
m→∞

(1− |φ(zm)|2)|f ′′
a (φ(zm)| = (1− ρ

2(φ(zm), a)),

and

lim
m→∞

(1− |φ(zm)|2)|f ′
a(φ(zm)| = (1− ρ

2(φ(zm), a)). (3.17)

That is,
lim

m→∞
(ρ(φ(zm), a)) = 0.

By combining (3.10), (3.11), (3.12), (3.13) and (3.17), we know that

lim
m→∞

(1− |zm|2)|φ′3(zm)|

(1− |φ(zm)|2)3
= 1,

lim
m→∞

(1− |zm|2)|φ′′(zm)||φ′(zm)|

(1− |φ(zm)|2)
= 1,

and

lim
m→∞

(1− |zm|2)|φ′′′(zm)|

(1− |φ(zm)|2)
= 1. (3.18)

This completes the proof of theorem.
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Theorem 3.2. Let φ be analytic self-maps of the unit disk, such that φ fixes the origin, then the
operator CφD : Z → Z is an isometry in the seminorm if and only if the following conditions hold.
(C)

sup
z∈D

(1− |z|2)|φ′2(z)|

(1− |φ(z)|2)3
≤ 1,

sup
z∈D

(1− |z|2)|φ′′(z)|

(1− |φ(z)|2)
≤ 1.

(D) For every a ∈ D, there exists at least a sequence {zn} in D such that

lim
n→∞

ρ(φ(zn), a) = 0,

and

lim
n→∞

(1− |zm|2)|φ′2(zn)|

(1− |φ(zn)|2)3
= 1,

lim
n→∞

(1− |zm|2)|φ′′(zn)|

(1− |φ(zn)|2)
= 1.

Proof. First, we will prove the sufficiency. By condition (C), for every f ∈ Z, we have

||(CφDf)(z)||Z = sup
z∈D

(1− |z|2)

(

f
′(φ(z))

)′′

= sup
z∈D

(1− |z|2)

[

φ
′(z)f ′′(φ(z))

]′

= sup
z∈D

(1− |z|2)

[

φ
′2(z)f ′′′(φ(z)) + φ

′′(z)f ′′(φ(z))

]

≤ sup
z∈D

(1− |z|2)|φ′2(z)||f ′′′(φ(z)|

+ sup
z∈D

(1− |z|2)|φ′′(z)||f ′′(φ(z)|

= sup
z∈D

(1− |z|2)|φ′2(z)|

(1− |φ(z)|2)3
|f ′′′(φ(z)|(1− |φ(z)|2)3

+ sup
z∈D

(1− |z|2)|φ′′(z)|

(1− |φ(z)|2)
|f ′′(φ(z)|(1− |φ(z)|2)

= sup
z∈D

(1− |z|2)|φ′2(z)|

(1− |φ(z)|2)3
||f ||∞

+ sup
z∈D

(1− |z|2)|φ′′(z)|

(1− |φ(z)|2)
||f ||Z

≤ ||f ||∞ + ||f ||Z . (3.19)

Now, we will prove that property (D) implies ||(CφDf)(z)||Z ≥ ||f ||Z .
In fact, given any f ∈ Z, then

||f ||Z = lim
m→∞

(1− |am|2)|f ′′(am)|,

||f ||∞ = lim
m→∞

(1− |am|2)|f ′′′(am)|,

for some sequence {am ⊂ D}. For any fixed m, it follows from (B) that there is a sequence {zmk ⊂ D}
such that

ρ(φ(zmk ), am) → 0,
(1− |zmk |2)|φ′2(zmk )|

(1− |φ(zmk )|2)3
→ 1,

(1− |zmk |2)|φ′′(zmk )|

(1− |φ(zmk )|2)
→ 1, (3.20)
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as k → ∞. By Lemma 2.2, for all m and k,
∣

∣

∣

∣

(1− |φ(zmk )|2)3f ′′′(φ(z)mk )− (1− |am|2)3f ′′′(am)

∣

∣

∣

∣

≤ C||f ||∞.ρ(zmk , am),

∣

∣

∣

∣

(1− |φ(zmk )|2)f ′′(φ(z)mk )− (1− |am|2)f ′′(am)

∣

∣

∣

∣

≤ C||f ||Z .ρ(z
m
k , am). (3.21)

Hence,

|(1− |φ(zmk )|2)f ′′′(φ(z)mk )| ≥ |(1− |am|2)f ′′′(am)| − C||f ||∞.ρ(zmk , am),

|(1− |φ(zmk )|2)f ′′(φ(z)mk )| ≥ |(1− |am|2)f ′′(am)| − C||f ||Z .ρ(z
m
k , am). (3.22)

Therefore,

||(CφDf)(z)||Z = sup
z∈D

(1− |z|2)|φ′2(z)|

(1− |φ(z)|2)3
|f ′′′(φ(z)|(1− |φ(z)|2)3

+ sup
z∈D

(1− |z|2)|φ′′(z)|

(1− |φ(z)|2)
|f ′′(φ(z)|(1− |φ(z)|2)

≥ lim
k→∞

sup
(1− |zmk |2)|φ′2(zmk )|

(1− |φ(zmk )|2)3
|f ′′′(φ(zmk )|(1− |φ(zmk )|2)3

+ lim
k→∞

sup
(1− |zmk |2)|φ′′(zmk )|

(1− |φ(zmk )|2)
|f ′′(φ(zmk )|(1− |φ(zmk )|2)

= (1− |am|2)|f ′′′(am)|+ (1− |am|2)|f ′′(am)|. (3.23)

The inequality ||(CφDf)(z)||Z ≥ ||f ||Z follows by letting m → ∞.
For any a ∈ D, and we will use the same test function fa defined by (3.6) which satisfies ||fa|| = 1. By
isometry assumption, for any a ∈ D, we have

2 = ||fφ(a)||Z = ||(CφDfφ(a))||Z

= sup
z∈D

(1− |z|2)|φ′2(z)|

(1− |φ(z)|2)3
(1− |φ(z)|2)3|f ′′′

φ(a)(φ(z))|

+ sup
z∈D

(1− |z|2)|φ′′(z)|

(1− |φ(z)|2)
(1− |φ(z)|2)|f ′′

φ(a)(φ(z))|

≥
(1− |a|2)|φ′2(a)|

(1− |φ(a)|2)3
(1− |φ(a)|2)3|f ′′′

φ(a)(φ(z))|

+
(1− |a|2)|φ′′(a)|

(1− |φ(a)|2)
(1− |φ(a)|2)|f ′′

φ(a)(φ(z))|

≥
(1− |a|2)|φ′2(a)|

(1− |φ(a)|2)3
+

(1− |a|2)|φ′′(a)|

(1− |φ(a)|2)
.

(3.24)

Hence, C follows by noticing a is arbitrary.
Since ||CφDfa||Z = ||fa||Z = 2 there exists a sequence {zm} ⊂ D such that

(1− |zm|2)

∣

∣

∣

∣

d(CφDfφ(a))

dzm
(zm)

∣

∣

∣

∣

= (1− |zm|2)|φ′2(zm)||f ′′′
a (φ(zm))|

+ (1− |zm|2)|φ′′(zm)||f ′′
a (φ(zm))|

→ 2, (3.25)

as m → ∞.

(1− |zm|2) |φ′2(zm)||f ′′′
a (φ(zm))|

=
(1− |zm|2)|φ′2(zm)|

(1− |φ(zm)|2)3
(1− |φ(zm)|2)3|f ′′′

a (φ(zm))|

≤ (1− |φ(zm)|2)3|f ′′
a (φ(zm)|. (3.26)
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(1− |zm|2) |φ′′(zm)||f ′′
a (φ(zm))|

=
(1− |zm|2)|φ′′(zm)|

(1− |φ(zm)|2)
(1− |φ(zm)|2)|f ′′

a (φ(zm))|

≤ (1− |φ(zm)|2)|f ′′
a (φ(zm))|. (3.27)

By combining (3.26),(3.27) and (3.25), it follows that

1 ≤ lim
m→∞

inf(1− |φ(zm)|2)3|f ′′′
a (φ(zm)|

≤ lim
m→∞

sup(1− |φ(zm)|2)3|f ′′′
a (φ(zm)|. (3.28)

1 ≤ lim
m→∞

inf(1− |φ(zm)|2)|f ′′
a (φ(zm)|

≤ lim
m→∞

sup(1− |φ(zm)|2)|f ′′
a (φ(zm)|. (3.29)

The last inequality follows (3.7) since φ(zm) ∈ D. Consequently,

lim
m→∞

(1− |φ(zm)|2)3|f ′′′
a (φ(zm)| = (1− ρ

2(φ(zm), a)),

and

lim
m→∞

(1− |φ(zm)|2)|f ′′
a (φ(zm)| = (1− ρ

2(φ(zm), a)). (3.30)

That is,
lim

m→∞
(ρ(φ(zm), a)) = 0.

By combining (3.25), (3.26), (3.27) and (3.30), we know that

lim
m→∞

(1− |zm|2)|φ′2(zm)|

(1− |φ(zm)|2)3
= 1,

and

lim
m→∞

(1− |zm|2)|φ′′(zm)|

(1− |φ(zm)|2)
= 1. (3.31)

From the above results follows the proof of theorem is completed.
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