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Abstract In this work we introduce and prove the different properties and theorems
of the fractional triple Elzaki transform like the linearity property, the first and the sec-
ond shifting properties, the convolution theorem, the periodic function property and the
operational formula. We also give an application of this new concept to solve a factional
partial differential equation in three dimensions satisfying given initial and boundary
value conditions.
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1 Introduction

In the past two centuries, the integral transforms have been widely applied as a tool to solve various
problems in pure and applied mathematics. Several integral transforms such as the most famous one
introduced by P.S. Laplace (1749-1827) in 1782, called the Laplace transform [3, 8] is defined by,

LUO) = F) = [0 (1)

0
In the early 2011, Tarig M. Elzaki [15] introduced the modified Laplace transform, called the Elzaki
transform (see also [10,12]), which is defined for a function of exponential order. Consider a function
in the set S defined as

[¢]

S={f(t): 3M, k1, k2 > 0,|f(t)] < Me®,ift € (1)) x [0,00),j = 1,2}

For a given function f(¢) in the set S, the constant M must be finite, the numbers k1, kamay be finite
or infinite. The modified Laplace transform, i.e.,the Elzaki transform denoted by the operator S is

defined by .
SN =T0) =p [ eE 0 (1.2)
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The variable p in this transform is used to factorize the variable ¢.

The triple Elzaki transform of a function f(z,y,t) of three variables x, y and ¢, that can be expressed as
a convergent infinite series, and for (z,y,t) € Rg’deﬁned in the first octant of the xyt- plane is defined
by the triple modified Laplace transform in the form [4]:

%zytf(w,y,t):T(o,pﬁ)zapé/ / / e~ Gt f(z, y, t)dadydt (1.3)
0 0 0

We mention here that the Elzaki transform defined by (1.2) follows as the special case of the very
recently introduced and the most powerful and versatile generalization of the Laplace transform, called
the Upadhyaya transform (see, Upadhyaya [14, (2.2), (2.3), p.473]). We point out below the connection
between the Upadhyaya transform and the Elzaki transform in terms of the notation of Upadhyaya [14,
subsection 4.5, pp.476-477] as

u{r@.o i) =u(ota)=s0@.00=70 (1.4

It is also to be noted here that the triple Elzaki transform (1.3) introduced early this year by Elzaki
and Mousa [4], is also a particular case of the Triple Upadhyaya Transform (TUT) (see, Upadhyaya [14,
subsection 6.14, p.501]) and the relation between the two is given by:

1 1 1 1 1 1
I/{g {f(x7y7t);0-77717p7 771767771} =us (Ua *71707 771767 771)
o p 0 o p 0

=S(f (z,y,t);0,p,8] =T (o, p,0)

(1.5)

As the above work of Upadhyaya [14] opens up many new future directions of work and applications of
the Upadhyaya transform, we propose to take up the further study and applications of the Upadhyaya
transform in our future works. For our present considerations the structure of this paper is organized
as follows: first, we begin with some basic definitions of Fractional Calculus in section 2, then define the
fractional triple Elzaki transform in the Definition 3.1 in section 3 and then prove the linearity property,
the convolution theorem, the first and the second shitting properties, the periodic function property
and the operational formula (differential property) of this new transform in the same section. In the
section 4 we obtain the exact solution of a fractional partial differential equation in three dimensions
satisfying some initial value and boundary conditions as an application of the results developed in
section 3 and finally the conclusions are stated in section 5.

2 Fundamental concepts of fractional calculus

Definition 2.1. [9,10] Let g(x) be a continuous function and not necessarily differentiable function,
where A > 0 denote a constant discretization span, the fractional difference of g(z) is known as

A%g(z) = (-1)* ( Z ) glz+ kN for 0<a<1 (2.1)
k=0

where ( Z ) = #lk), and the a-derivative of g(x) is known as

@) () — im 239(2)
o) = i, S0

See the details in [9,10].

Definition 2.2. [13] Let g(z) be a continuous function, but not necessarily differentiable, then
(i). Let us assume that g(x) = A\ where A is a constant, thus a- derivative of the function g(z) is

)\ﬁ, Oé>07

Do\ = .
0, otherwise.
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On the other hand, when g(z) # A then
9(x) = g(0) + (9(z) — 9(0)),

and the fractional derivative of the function g(x) is given as
D%g(x) = D, g(0) + Ds (9(x) — 9(0)),
(ii). For any (a > 0) one has

—a o 1 * a—1
D g(ﬂc:Jgac:i/(a:—T g(r)dr, a>0. (2.2)
)= 9() = g [ @1 ha)

Definition 2.3. [11] The Caputo fractional derivative of the left sided g € C” ,n € N{J{0} is defined
by

D%g(1) = 883(;) =Jm e [78837(;)} ,m—1l<a<m,méeN. (2.3)
We record properties of the operator J* (see [11])
). I g(r)=JPg(r) . a,B>0
(ii). Jort = F(Fofiimw*“ ,a>0, p>—-1,7>0

k

(iit).  J*(D2g(r)) = g(r) = 312 9" (0") %
Definition 2.4. [5] Let g(z) be a continuous function, so the solution of the fractional differential
equation

dy = g(x)(dz)* , 20, y(0)=0, >0,

by integration with respect to (dz)® is the following
v@) = [ atr)an . y0) =0,
0
i.e.,
y(z) = a/ (x—7)*'g(r)dr , 0<a<1 (2.4)
0

For example, if g(z) = x” one obtains:

CBgme = LB+ DI (a+1) sya
/OT(dT) = TBtatD ,0<a<1.

Definition 2.5. [11] If m —1 < a < m , m € N, then the fractional double Elzaki transform of the
fractional derivative is,

2 m—1
St [Dig(w,t)] = w - Z PR 0y, m—1<a<m, (2.5)
k=0

3 Theorems and properties of the fractional triple Elzaki transform

In this section we define the fractional triple Elzaki transform of the functions dependent on three
variables and give some properties for the same as pointed out earlier in the abstract of the paper and
also in the section 1 above.

Definition 3.1. The fractional triple Elzaki transform of the function f(z,y,t) of three variables z, y, t
is defined as follows:

Sayef (2,1, 1) = T(0,p,8) = 06" / / / Bal= (5 + L )71 o, )" ()" (1)

— (6°p*6") lim / / / Bl (5 4+ Y 2] fly, ) (do) (dy)" (@) (31)

N — oo
M — oo
K — oo

where 0,p,0 € C, z,y,t >0, and FEu(x) = is the Mittag-Leffler function.

Zoo s
m=0 T'"(am+1)
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Definition 3.2. [13] Let f(x,y,t) denote a function which vanishes for negative values of z,y,t. Its
triple Laplace’s transform of order « (or its o' fractional Laplace transform) is defined by the following
expression:

Loy f(@,9,1) = F(o,p,6 / / / Bal—(0z + py + 6)°] (2,9, 1) (dz)* (dy)*(dt)*  (3.2)

—  lim / / / Eal— (0@ + py + 86)°] f(z,y, ) (dw)* (dy)” (dt)°

N — oo
M — oo
K — o

provided that integral exists.

Theorem 3.3. The Linearity of the triple fractional Elzaki transform: Let f(z,y,t) and
g(z,y,t) be functions whose triple fractional Elzaki transforms exist, then

%zyt [Gf(l', y7t) + /Bg(xa y7t)] = egiyt [f(xvy) t)] + ﬁ%zyt [g($7ya t)]

where 6 and B are constants.
Proof.

Syt [0 (@, ,) + Bg(w, y,1)]
=08 [ ST ST 10f (yst) + Bg(x,y, 6)] Ba[—(2 + £ + §)*](dx)* (dy)* (dt)*
=0"p*8" [° [ [ [0f (2, y,1)] Ea [= (5 + 5 + 5)°1(dw) (dy)" (db)* +

AR Nl A f°° [Bg(z,y,t)] Ea[—(5 + L + 5)°](dz)™(dy)* (dt)*
=0%p*8 0 [ [ ST [ (@, )] Bal—(£ + ¥ 4 £)*](da)* (dy)* (dt)*+

op*s” ﬂfo fo Jo lo(@, y, )] Ba[—(2 + % + 5)*](dx)* (dy)* (dt)*
=0 Sayt [f(z,y,8)] + BSaye [9(z,y, 1))

O

Theorem 3.4. The First Shifting Property: If Suy [f(2,y,t)] = Ta(o,p, ) , then

e [ Bal= (5 + 24 50w 0)| = T2 +0,14 8,1+ 1)
Proof . Let
%zyt [f( 7y1 )] TS(U p75)
= 08 [ 2 Bal— (2 4 1+ )11y, 1) (de)* (dy)* (de)°
Then

Sepe [Eal=(% + 2 + §)°)f(2,9.1)]
= 08" [ J7 5 Bal=(2 + 4 + 5% [Bal=(% + 2 + 5)°)] J(z,y,0)(do) (dy)° (d1)°

by using the equality Fo (2 + % + %)o‘] = Eap(g)o‘EaM(%)"‘Eap(ﬁ)a which implies that,

Syt [Bal=(2 + 22 + %1/ (a1

=0%ps" fo fo J57 Bal - (572 4 G20 4 G009 f(,y, 1) (de)* (dy) (dt)”

= 0 [ Bal—(22) {5" [ B H“ﬂ+%)ﬂﬂx,y,t)(dy)a(dt)ﬂ}(dx)a
)

flz, 1+ 8,14 k) dx
_T3(1+9 1+ﬂ 1+ k).

= g% fo o (1+9)I)
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Theorem 3.5. The Periodic Property: If f(z,y,t) is a periodic function of periods 0,83 and k
respectively, in the variables z,y and t , i.e., f(x + 0,y + B,t + k) = f(z,y,t) and if Sy [f(z,y,1)]
exits then

\sa:yt f 7y7t)} = T (U P 6)

e PR A RO

Proof . Let

) 1f(@,y,t)(dz)" (dy)* (dt)*

+

y
p
" | BG4 L D ) o) (@) )+
o [T L 91 @)
Putting r = u+ 0,y = v+ 5,t = w + k in the second triple integral we get
Sayt [f(2,9,1)] = Ta(0, p, 0)

— y ta «@ « «@
_apa///E L) 1y, ()" (dy)" )"+

. A0 @B (AR
p(s/&/ﬁ/REa[(U+ + ) ] Fut agw+ B+ w)(dw)” (dv)” (dw)

p d
Or,
T3(0,0.6) = 05" / / [ Ed-C s gﬁf(m,y,t><dx>“<dy>“<dt>“+
e e ] R B e R B R ICORCORCON

o [ [ / Bal= (5 + L )] (o9 0)de)” (d)" (0t)"+
o° 5" [Ea[_é + % + gﬁ} /O“’ /0°° /O°° Ba[=( 4 )1 v, ) () () ()

_ o ac”® oot z Yy t.“ o o ﬁ 3
=" [ [ BG4 L @ @@ + Bl 4 5 1i00.0)

Therefore,
o 0 B K T a
oo [ B+ L 5 ) ) ) )
= T3(0,.5) - [eaHg + 245 120
Hence,
3 _ o%p*é £y T ) o «
b Py / [ Bl L vt

Theorem 3.6. The Second Shifting Property: If Suy: [f(x,y,t)] = To (o, p, ) then,

Seyt [f(x — 0,y — B,t — k)H(x — 0,y — B,t — K)] = Ea[—(% + % + g)a}Tg(J,p,(S)
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where H(x,y,t) is the Heaviside unit step function defined by
. 1, when, x >0,y > p,t >k

H(z—0y—Bt—r)= { 0, when, © < 0,y < B,t < k.
PTOOf. Let C\\fﬂcyt [f($7y,t)] = T2(0-7 075 =0 pa5 fo fo fo Ot %+%)a]f(m,y7 t)(dx)a(dy)a(dt)a
Then
97y_ﬂ7t_K’)] =
+5)f (@ =0,y — B,t — k)H(z — 0,y — B,t — k) (dz)*(dy)* (dt)*
L+ 5)f (@ =0,y — B,t — k) (dx)™(dy)* (dt)*

v, t — K = w gives

z—0,y— ﬂ,t*ﬂ)}

(16 fO fO fO §+
_O_(!paé- fa fﬁ f E _ %

which, on putting x — 0 = u,y —

s9731,175 [f( eay th )
= |Eal=(2 + 5+ 5)°0] 0708 [T J57 Jo7 Bal=(% + £ + %)°)f (u, v, w)(du)* (dv)* (dw)"

B
— [Bal(

;
8=
(

a4
o
a4
o

Z
+2 4 5] (0, p,6).

O

Theorem 3.7. The Convolution Theorem: If .y [F(z,y,t)] = f3(0,0,6), Suyt [G(z,y,1)] =
g3 (0, p,0), then the convolution of the functions F(x,y,t) and G(x,y,t) is denoted by F * x * G and is
defined by

Suyt [(F 5% % Q) (2,1, 8)] = 0% 8" / / /Fm—&y B.t — 1) G(0, B, ) (d)* (dy)* (dt)°
and we have
Syt [(F 5 %% G) (2,9, 1)] = Syt [F(,9, )] - Saye [Gm,y,1)] = fa(0,p,6) - galo, p, 6).
Proof. From the definition of the convolution we have

Seyt [(F *+ % Q) (z,y,1)]

B 11,' y « a a a
= [ [ B G L )10 6) o) () )

— % p6" /0 /0 /O Ea[—(g + % + %)a]X
e [ Fle— 0.y~ Bt — ) Gl B, w0(a0)” (@8)" (@r)" | (@) @) (a0)°

which on using the Heaviside unit step function yields

Syt [(F * %% G) (z,y,1)]
:Up(5/ / / G0, B, K)(d0)" (dB)* (dr)" x
{ o5 / / /E 24y +5) 1P -0,y — B,t—m)H(m—Q,y—ﬂ,t—ﬁ)] (da)* (dy)® (dt)"

The above expression may be simplified by using the result of the Theorem 3.6

oyt [(F * %% Q) (z,y,1)]

pLIEN / / / Bal=(% + L+ 5) 11200, 8)G (0. 8.) (@0)" (49)" (d)”
= 68" (0, pyd / / / E. £)71G (6. 5.5)(d0)° (d5)" (dr)”

= fa(07p7 ) 'ga(av P 6)
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Theorem 3.8. [2] Let a,8,x >0,n—1 <a<nm-1<pB<m,h—1<x<h,nmhéeN
be such that f € C*(RT x RT x RT), A\ = max{a, 8, x}, f* € L1](0,a) x (0,b) x (0,¢)] for any a,b,c >
0,|f(z,y,t)| < ke§+£+% x>a>0,y>b>0,t>c>0 the triple Elzaki transform of f(z,y,t) and

1++7‘
%WPOl m,j=0,1,...,m,r=0,1,...,h evist. Then,

Syt §D§+f(m,y,t)i=0‘“ e F (9.0} = KI5 o By { THE0 ]

. 99 f (@0,
oSyt ;Df+f(x,y,t) =pF Eoy{ f(2,y,8)} — Zm ' PP Exy {% )
oSy { DN Fl@,y,0) | = 67 [Euye{ @y, D)} = S92 p By { 205500

Proof. We refer the reader to [2] for the proof of this theorem.
O

Theorem 3.9. The Operational Formula: Let f(x,y,t) € C*(RT x RY x RT), then the operational
formula for the triple fractional Elzaki transform is given by

Ta(o,p0)

oo

S[DS f(z,y,t) : (0,p,8)] = o°T(a+1)T5(0, p, d) (3.3)

Proof. Let
S @,.8) = T2 8) = 06" [ [ [T Bl E 4 Lt V) () @0
Then
S[Dz f(z,y,1) : (0,00

= " / / / Bal~(E+ 245 )17, y, 1) (d)” () ()"

=" [T B [/OWEQ[" o [ Bl ) canyany,

Applying the integration by parts to the expressions inside the square brackets on the right hand side
of the above equation we have

S[D f(z,y,1) : (o,p,0)

=" [T ()] [/ Bal=(2)" {o" [P+ @) (o, Bl =) 7 +

. / Bl (5) 1 (@, ) d) | | (dy)* ()"

[eS)

=" [T [T Bl {0 e+ 100 +
o [ Bl Vit ao) ”] " (dr)°
0
Q

p

6" [T Bl | [T BT | [ B ) fetia)-

T (1 + a) £(0,5,)] | (dy)* (at)*

_ T3(o,p,6)

a0 T+ a) T3(0,p,0)
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4  Applications

In this section on the assumption that the inverse fractional triple Elzaki transform exists, we use
the inverse fractional triple Elzaki transform to obtain the exact solutions of the partial differential
equations of fractional order in three dimensions with initial and boundary conditions.

Example 4.1. Consider the following partial differential equation of fractional order

2
D?f(x,w):%, 0<a<l1 (4.1)

with the following initial and boundary conditions

f(0,y,t) =0 fo(0,y,1) = cosy Ea(—1%)
f(z,y,0) = cosz cosy

Solution. Taking the fractional triple Elzaki transform of (4.1) and the fractional double Elzaki
transform of the initial and the boundary conditions gives

St [DF 0,30 = S | L0 |

L Sy [f (@ t)] — 67T (0 + 1)Say [ (2,3, 0)]

o«
(4.2)
— 9 0001 = S [0, = 0% [ G20
3 _ o’ P’ 3 _ ITZ(0,p,6) _ p>  6°T(a+1)
Ta(ay Ps 0) - mm ’ Ta(ovpa 5) - 07 oz - (PQ I 1) (52 T 1) (43)
Then (4.2) becomes
~ 1 1) o® 'S p? 8 T(a+1)
Seye [F(:9,0)] (57 B ﬁ) =T N D @ E) et

N 11y 503 p’T(a + 1) — 6**0p*T(a + 1)

\Szyt [f($7y7t)] (5(1 O'2> - (02+1)(p2+1)(6a+1)
o?p?6%°T(a+ 1)

ST DR+ D+ 1)

Syt [f(#,y,1)] = (
Applying inverse fractional triple Elzaki transform, we get
f(z,y,t) = sinz cosy Eq [—17]
which is the required exact solution of (4.1).
5 Conclusion

This work introduces the definition of the fractional triple Elzaki transform and the various properties
like the linearity property, the first and the second shifting properties, the periodic property, the
convolution theorem and the operational formula are deduced and the results obtained are applied to
find the exact solution of a fractional partial differential equation in three dimensions satisfying some
initial and boundary value conditions.
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comments on the contents of this paper.
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