Print version ISSN 0970 6577 Online version ISSN 2320 3226 DOI: 10.5958/2320-3226.2022.00001.7

Original Article

Content Available online at: https://bpasjournals.com/math-and-stat/

Some New Results on Commutative Algebra

Dr. Abhik Singh*

Author's Affiliation:

Department of Mathematics, Patna University, Patna, Bihar-800005, India

*Corresponding Author: Dr. Abhik Singh, Department of Mathematics, Patna University, Patna, Bihar-800005, India

E-mail: abhik51@gmail.com

How to cite this article: Singh A. (2022). Some New Results on Commutative Algebra. *Bull. Pure Appl. Sci. Sect. E Math. Stat.* 41E(1), 1-5.

ABSTRACT

In this paper, we shall discuss and give applications of a polarization formula, which yields estimates of $x_1 cdots cdots$

KEYWORDS: Polarization, Convex Algebra, Equiregular.

1. INTRODUCTION

The polarization formula: Let E and F be linear spaces over fields of characteristic zero \hat{u} : E XX, E \rightarrow F be a symmetric multilinear mapping, and let $u(x) = \hat{u}(x,....x)$. Polarization is the operation which allows us to recover \hat{u} when u is given.

Theorem (1.1)

Let e_1, e_n be elements of E.We have $n!\hat{u}$ (e_1, e_n)= $\sum_1 \le (1,2$n) ($(-1)^{n-c(l)}$ u($\sum_j \in I$ e_j where C(I) is the number of element of I.

We shall first prove the formula when E=F=A is a commutative algebra. Once this is done, the reader will have a choice .He may read the proof and observe that it also yields the result in general or he may read further and find a soft method which shows why theorem (1.1) is a corollary of its special case.

a is a commutative algebra. We consider the multilinear form \hat{u} $(a_1,...,a_n)=a_1,...,a_n$

Let
$$W_k = \sum_{c(I)=k} \left(\sum_{i \in I} a_i\right)$$
 We want to show that $(-1)^n n! a_1 \dots a_n = \sum_{o}^n (-1)^k w_k$ Consider any term $a_{i_1}^{p_1} \dots a_{i_r}^{p_r}$ in the development of w_k . We take $i_1 < i_2 < \dots < i_r$, also $P_1 + \dots P_r = n$. This term occurs with the coefficients

$$\frac{n! !}{P_1^1 \dots P_r^1} \binom{n-r}{k-r}$$

Since $\binom{n-r}{k-r}$ of the subsets I of $(1,2,\ldots,n)$ which have k elements contain $i_1\ldots\ldots i_r$, and each of these subsets yields a term similar to the one we consider, with the coefficient $\frac{n!}{p_1!\ldots\ldots p_r!}$.

This contain the factor $(1-1)^{n-r}$. It vanishes for $n \neq r$. For n=r, it is equal to $(-1)^n n!$.

We may apply the above proof when \mathbf{a} is the algebra of polynomials in \mathbf{n} indeterminates a_1, \ldots, a_n . We obtain a relation

$$(-1)^n$$
n! a_1 $a_n = \sum_k (-1)^k \sum_{C(i)=k} (\sum_{i \in I} a_i)^n$

$$\mathbf{P_n} \to \mathbf{F}$$
 which maps a_{i_1}, a_{i_n} onto $\hat{u}(a_{i_1}, \dots, a_{i_1})$.

This mapping maps the above relation in P_n onto a relation of F.It is easy to see that this is the required one. This formula allows us to obtain convex estimates of \hat{u} when convex estimates of u are assumed.

Corollary: Let E,F be real or complex linear spaces. Let $X \subseteq E, Y \subseteq F$ be absolutely convex .Let $u_\alpha : E \to F(\alpha \varepsilon A)$ be homogeneous polynomial mappings, u_α of degree n_α , and assume that $u_\alpha x \subseteq M_\alpha Y$ for all α .

Then

$$\hat{u}_\alpha(X,\dots\dots,X)\subseteq (2\,e)^n\alpha\,M_\alpha Y$$
 for all α C(I) $\leq n_\alpha,\sum_{i\in I}e_1\in n_\alpha\,X$

If each $e_1 \in X$, and $u(\sum_{i \in I} e_i) \in M_\alpha n_\alpha^{n_\alpha} Y$.

Now, $n_{\alpha}! \hat{u}$ (e_1, e_n is a linear combination of $2^{n_{\alpha}}$ such terms

$$\begin{array}{ll} \widehat{u_{\alpha}}\;(e_{1}.....e_{n_{\alpha}})\in M_{\alpha}\frac{(2n_{\alpha})^{n_{\alpha}}}{n_{\alpha}!}Y\\ \text{Stirling 's formula shows that }n_{\alpha}!\geq\left(\frac{n_{\alpha}}{e}\right)^{n_{\alpha}} \;\;\text{i.e} \end{array}$$

$$\widehat{u_{\alpha}}(e_1,\ldots,e_{n_{\alpha}}) \in (2 e)^{n_{\alpha}} M_{\alpha} Y.$$

2. FRECHET ALGEBRAS ON WHICH ENTIRE FUNCTIONS OPERATE

Let abe a topological algebra, $a \in a$.Let $f = \sum f_n a^n$ be an entire function. It is responsible to say that f operates on a if $\sum f_n a^n$ converges. It is even more responsible to say that entire functions operate on a if $\sum f_n a^n$ converges each time (f_n) is the sequence of Taylors coefficients of an entire function and each time $a \in a$

It is clear that entire functions operate on aif a is complete ,Locally m-convex if ais an inverse limit of Banach algebras.

Theorem (2.1)

Let $\mathfrak a$ be acommutative, Frechet algebra on which analytical functions operate. Then $\mathfrak a$ is locally m-convex. The proof goes in two steps. We first prove the following lemma by a double category argument:

Lemma (1.1)

Let α be a complete metrizable locally convex algebra. Assume that $\lambda_n a^n \to 0$ for every sequence of positive scalers λ_n such that To $\lambda_n^{\frac{1}{n}} \to 0$ each neighbourhood V of the origin in α we can associate a neighbourhood W such that

$$V \supseteq \{x^n : x \in W, n \in N, n \neq 0\}$$

We start out with a closed convex balanced neighbourhood U of the origin and a sequence λ_n such that $\lambda_n^{\frac{1}{n}}$ is decreasing and tends to zero. Let V be the set of $a \in \mathfrak{a}$ such that $\lambda_n a^n \in U$ for all n. Then V is closed and balanced, V is absorbing. Consider any $a \in \mathfrak{a}$, Since $\lambda_n a^n \to 0$, $\lambda_n a^n \in U$ for all but a finite number of values of n. For those $n, \lambda_n a^n \in \mathbb{C}^{-1}$ U for $n \in \mathbb{C}$ 0, small .We take $n \in \mathbb{C}$ 1, $n \in \mathbb{C}$ 2 for all n. So V has a non-empty interior.

Let U_1 be a new neighbourhood of the origin such that $U \supseteq U_1$. U_1 . Let V_1 be the set of $a \in a \land a^n \in U_1$ for all $n \ge 1$. Then V_1 has a non –empty interior.

Let
$$X = \frac{1}{2(a+b)}$$
 with $a \in V_1$, $b \in V_2$, then

$$\lambda_n x^n = 2^{-n} \sum_{r=1}^{\infty} (\frac{n}{p}) \frac{\lambda_n}{\lambda_r \lambda_{n-r}} \lambda_r a^r \lambda_{n-r} b^{n-r}$$
. This belongs to U because

$$\lambda_r a^r \lambda_{n-r} b_{.}^{n-r} \in U, \lambda_n \leq \lambda_r \lambda_{n-r}.$$

(because
$$\lambda_n^{\frac{1}{2}}$$
 is decreasing)and $2^{-n} \sum (\frac{n}{r}) \frac{\lambda_r}{\lambda_r \lambda_{n-r}} \le 1$

So
$$V \supseteq \frac{1}{2(V_1 + v_2)}$$
 is a neighbourhood of the origin.

This is half the proof of the lemma. We observe that we can associate to every sequence of complex numbers c_n such that $|c_n|^{\frac{1}{n}} \to 0$ a sequence of positive reals λ_n such that $|c_n| \le \lambda_n$ and $\left(\frac{1}{n}\right)^{\frac{1}{n}}$ decreases to zero. So, for every such sequences c_n and every neighbourhood U of the origin, we can find a neighbourhood V of the origin such that $c_n x_n \in U$ each time $x \in V$.

To Prove the second half, we consider a neighbourhood U of the origin ,take U closed and convex ,and then a basis $V_1, \dots, V_k, \dots, V_k, \dots, V_k$ and then a basis V_1, \dots, V_k and V_1, \dots, V_k are the origin in V_1, \dots, V_k and V_k are the origin in V_k are the origin in V_k and V_k are the origin in V_k and V_k are the origin in V_k ar

We let X_k be the set of sequences of scalars c_n , with $|c_n|^{\frac{1}{n}} \to 0$ and for all $x \in V_k : c_n x^n \in U$. Then x_k is absolutely convex , closed in the space of entire functions, and U X_k is the space of all entire functions. Baire's theorem shows that X_k must have an interior for large K.

This gives constants M_1 , M_2 , and a neighbourhood V_k of the origin, such that $x^n \in M_1$. M_2^n U, whenever $x \in V_k$. And $x^n \in U$ if $x \in \frac{V_k}{M_{1.M_2}}$.

So the lemma is proved.

To complete the proof, we shall use a rewording of the corollary theorem.

 V_1 is the absolutely convex hull of the set of x_1, \ldots, x_n , with $\forall n : x_1 \in \frac{V}{2}e$, and $n \ge 1$. The corollary gives the result.

Combining Theorem (1.1) and (2.1), we see that each neighbourhood U of the origin in a Contains a neighbourhood V, which is absolutely convex and idempotent. The algebra is locally multiplicatively convex.

3. CONTINUOUS INVERSE LOCALLY CONVEX ALGEBRAS

Theorem (3.1)

A commutative, locally convex, continuous inverse algebra is locally multiplicatively convex. It is possible to associate to each neighbourhood U of the origin in an neighbourhood V in such a way that U⊇ $\{x^n: n \in \mathbf{N}, n \neq 0, x \in U.\}$

Once this has been shown, we observe that U and V may be taken absolutely convex, Lemma (2.1) shows that an absolutely convex, idempotent V_1 can be found in such a way that $U \supseteq V_1 \supseteq (2e)^{-1}v$, and theorem (3.1) follows.

So we must show that $x^n \to 0$ and $\in \mathbb{N}$, $n \neq 0$. We choose a neighbourhood of the origin U_1 , such that $\rho(x) < 0$ 1/2. When $x \in U_1$, then by the holomorphic functional calculus $x^n = \frac{1}{2\pi} \int_0^{2\pi} e^{int} (1 - e^{it}x)^{-1} dt.$

$$x^{n} = \frac{1}{2\pi} \int_{0}^{2\pi} e^{int} (1 - e^{it}x)^{-1} dt$$

 $x \to o, (1 - e^{it}x)^{-1} \to 1$ uniformly, $t \in IR$ and $x^n \to 0$ uniformly, $n \in N, n \neq 0$.

4. THE EQUIREGULAR BOUNDEDNESS

Let now abe a commutative B-algebra with unit. An element aa is regular if $(a-a)^{-1}$ is defined an bounded for a large.

Defination (4.1)

A subset B of regular elements of ais equiregular if it is possible to find M>0 in such a way that a-B has an nverse when $a \in B$, $|s'| \ge M$

Theorem (4.1):

B is an equiregular set if and only if it is possible to find some M such that $\{\frac{b^n}{M^n}: b \in B, n \oplus N\}$ is a bounded set.

Corollary: An equiregular set is bounded. Assume equiregular and assume B equiregular and assume $(a - s)^{-1}$ defined and bounded for $|s| \ge M$ and $a \in B$, Then for all $a \in B$, for all n,

$$a^{n} = \frac{M^{n}}{2\pi} \int_{0}^{2\pi} e^{int} (1 - Me^{-it}a)^{-1} dt$$
, and $\left\{\frac{a^{n}}{M^{n}}\right\}$

considered is bounded. If conversely, this set is bounded, and

 $|a| \ge 2M$ then $-\sum a^{-n-1}a^n = (a-s)^{-1}$ belongs to the completant hull of this bounded set. It follows that B is an equiregular set.

The set a_r of regular elements of a commutative B-algebra axis a sub-algebra of a.

Theorem (4.2):

The set of equiregular subsets of a_r is an algebra boundedness on a_r .

If B is equiregular, and if B_1 is a completant bounded subset of a, then $\bigcap_{\epsilon>0} (B+\epsilon B_1)$ is equiregular.

An analysis of the proof of the above theorem yields the uniform majorants that we need to prove the first part of the theorem (4.2). It is not more difficult to prove that the sum, or the product of equiregular sets is equiregular, then to show that the sum ,or the produ Type equation here. ct of regular elements is regular.

Let now B be equiregular. Let $s \in \cap (B + \in B_1)$ with B_1 completant, $B_1 \supseteq B$. We choose M real, and B_2 bounded in such a way that $(a-a)^{-1} \in B_1$ when $|s| \ge M$, $a \in B$. Choose $a_n \in B$, $a_n - s \in 2^{-n}B_1$. Then $(a_n - a)^{-1} - (a_m - s)^{-1} = (a_m - a_n)(a_n - s)^{-1}(a_m - s)^{-1} \in (2^{-m} + 2^{-n})B_1B_2^2$.

This shows that $(a_n - s)^{-1}$ is Cauchy sequence of the Banach space $a_{B_3} \cdot B_3$ is completant. $B_3 \supseteq B_1 B_2^2$. This sequence has a limit, which is an inverse of (a-s). This limit belongs to the closure of B_2 in the Banach space \mathfrak{a}_{B_2} This completes the proof .It is yet to be known wheather the equiregular boundedness of a B-algebra is convex. A convex boundedness can be associated to every vector space boundedness, its elements are the sets with a bounded convex hull.

Theorem (4.3):

The convex boundedness associated to the equiregular boundedness is the allan boundedness of the algebra of regular elements.

This is an straightforward application of lemma (2.1) .Let B be equiregular and convex .Choose M large enough, then B_1 convex, bounded and such that $\frac{x^n}{M^n} \in B_1$ when $x \in B_1$, $n \in \mathbf{N}$.Let B_1 be the absolutely convex hull of $\{\frac{x_1,\dots,x_n}{(2Me)^n}: n \in \mathbf{N}, \forall_i : x_1 \in \mathbf{B}\}$

Then B_2 is bounded, absolutely convex, and idempotent, and $B \subseteq MB_2$.

5. CONCLUSION

- (1) Hence a commutative, locally convex, continuous inverse algebra is locally multiplicatively convex.
- (2) It is clear that the bounded, absolutely convex idempotent sets are equiregular, so the Allan boundedness is the convex boundednedd associated to the equiregular one.

REFERENCES

- 1. Adasch, N. (1978). Topological vector spaces, Lecture notes in Math, Vol. 639. Springer-Verlag Berlin.
- 2. BachaMan, G and L. Narici. (1966). Functional Analysis, Academic Press, Newyork.
- **3.** Kothe, G (1979). Topological vector spaces, vol 1 and vol 2.
- **4.** Kothe, T. (1966). Perturbation theory for linear operators, Springer.
- 5. Pietsch, A. (1972). Nuclear Locally convex spaces, springer.
- 6. Taylor, A.E. (1980). Introduction to Functional Analysis, Waley, NewYork.
- 7. Goldberg, S. (1966). Unbounded linear operators, MCGraw Hill Newyork.
