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ABSTRACT 

In this paper, we shall discuss and give applications of a polarization formula, which yields estimates 

of𝑥1 … … … … … 𝑥𝑛  when estimates of 𝑥𝑛 are given, and estimates of the polarized forms of the terms of the 

Taylor expansion of a bounded holomorphic function over a bell in Banach space. The polarization formula can 

be used to obtain new properties of commutative algebras, with a convex topology or a convex bounded 

structure. The polarization formula will be proved in the first section,a  few application will be given in section 

2,3,4 in which we obtain estimates of 𝑥1 … … … … … 𝑥𝑛 from estimates of 𝑥𝑛. We shall also define the infinite 

dimensional holomorphic functional calculus. 
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1. INTRODUCTION 

 
The polarization formula: Let E and F be linear spaces over fields of characteristic zero 

𝑢̂: E X ...............................X,  E F be a symmetric multilinear mapping, and  

let u(x) = 𝑢̂(x,..............x).Polarization is the operation which allows us to recover  𝑢̂ when u is given. 

 

Theorem (1.1) 
Let 𝑒1.......................,𝑒𝑛  be elements of E.We have 

n!𝑢̂ (𝑒1.......................,𝑒𝑛)=∑ ≤1 (1,2.........n )  ( (−1)𝑛−𝑐(𝐼)
u(∑ 𝑗 ∈ I 𝑒𝑗 

where C(I) is the number of element of I. 

 

We shall first prove the formula when E=F=A is a commutative algebra. Once this is done, the reader will have 

a choice .He may read the proof and observe that it also yields the result in general or he may read further and 
find a soft method which shows why theorem (1.1) is a corollary of its special case. 

a is a  commutative algebra. We consider the multilinear form 𝑢̂ (𝑎1,.............𝑎𝑛)=𝑎1.............𝑎𝑛 

 

Let 𝑊𝑘=∑  (𝑐(𝐼)=𝑘 ∑ 𝑎𝑖∈𝐼 𝑖
) 

We want to show that 

(−1)𝑛n!𝑎1............................𝑎𝑛=∑ (−1)𝑘𝑛
𝑜 𝑤𝑘 

Consider anyterm 𝑎𝑖1

𝑝1....................𝑎𝑖𝑟

𝑝𝑟 in the development of 𝑤𝑘.We take  

𝑖1 < 𝑖2 <....................................< 𝑖𝑟,   also    

𝑃1+...........................................................𝑃𝑟=n. This term occurs with the coefficients 

 
𝑛!   !

𝑃1
1 … … … … … … … … … 𝑃𝑟

1
(𝑘−𝑟

𝑛−𝑟  ) 
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Since (𝑘−𝑟
𝑛−𝑟  ) of the subsets I of (1,2,.....................................,n) which have k elements contain 

𝑖1 … … … … … … … … … … … … … … … … … … … … 𝑖𝑟 , and each of these subsets yields a term similar to the one we 

consider, with the coefficient 
𝑛!   !

𝑃1
! ………………………𝑃𝑟

!  . 

The coefficient of  𝑎𝑖1

𝑝1....................𝑎𝑖𝑟

𝑝𝑟  in 

∑(−1)𝑘𝑤𝑘 =
𝑛!   !

𝑃1
! ………………………𝑃𝑟

! ∑ (−1)𝑘
𝑘 (𝑘−𝑟

𝑛−𝑟)  . 

 

This contain the factor (1 − 1)𝑛−𝑟 .It vanishes for n≠ 𝑟.For n=r,it is equal to (−1)𝑛𝑛!  . 
We  may apply the above proof when a is the algebra of polynomials in n indeteminates  𝑎1............................𝑎𝑛 

We obtain a relation 

 

(−1)𝑛n  ! 𝑎1............................𝑎𝑛 = ∑ (−1)𝑘
𝑘 ∑ (∑ 𝑎𝑖)𝑖∈𝐼𝐶(𝐼)=𝑘

𝑛
 

 

In  the space 𝑷𝒏 (𝑎1............................𝑎𝑛).Let now 𝑢̂: E x..................................x E→ 𝐹 be a Symmetric multi-

linear mapping, and𝑒1.......................,𝑒𝑛 be elements of E. We obtain a linear mapping  

 

𝑷𝒏 → 𝑭 which maps𝑎𝑖1
..........................................𝑎𝑖 𝑛

 onto 𝑢̂(𝑎𝑖1
, … … … … … … … … … … . , 𝑎𝑖1

). 

 

This  mapping maps the above relation in 𝑷𝒏 onto a relation of F.It is easy to see that this is the required 

one.This formula allows us to obtain convex estimates of 𝑢̂ when convex estimates of u are assumed. 

 

Corollary: Let E,F be real or complex linear spaces. Let X⊆ 𝐸,Y⊆F be absolutely convex .Let 𝑢𝛼 : 𝐸 → 𝐹(𝛼𝜀𝐴) 

be homogeneous polynomial mappings, 𝑢𝛼  of degree 𝑛𝛼  , and assume that 𝑢𝛼  𝑥 ⊆ 𝑀𝛼  𝑌 for all 𝛼. 
 

Then 
 

𝑢̂𝛼(𝑋, … … … … … … … … … … … … … … . , 𝑋) ⊆ (2 𝑒)𝑛𝛼 𝑀𝛼𝑌 for all 𝛼 

C(I)≤ 𝑛𝛼 , ∑ 𝑒1𝑖∈𝐼 ∈ 𝑛𝛼  𝑋 

 

If each 𝑒1 ∈ 𝑋,and u(∑ 𝑒𝑖𝑖∈𝐼 ) ∈ 𝑀𝛼𝑛𝛼
𝑛𝛼 𝑌. 

 

Now,𝑛𝛼! 𝑢̂ (𝑒1.......................,𝑒𝑛 is a linear combination of 2𝑛𝛼 such terms 

 

𝑢𝛼̂  (𝑒1.......................,𝑒𝑛𝛼
) ∈ 𝑀𝛼

(2𝑛𝛼)𝑛𝛼

𝑛𝛼!
Y 

Stirling ‘s formula shows that 𝑛𝛼! ≥ (
𝑛𝛼

𝑒
)

𝑛𝛼
   i.e 

 
 

𝑢𝛼̂(𝑒1.......................,𝑒𝑛𝛼
) ∈ (2 𝑒)𝑛𝛼𝑀𝛼 Y. 

 

 

2. FRECHET ALGEBRAS ON WHICH ENTIRE FUNCTIONS OPERATE  
 

Let  𝔞be a topological algebra,  a   ∈ 𝔞.Let  𝑓 = ∑ 𝑓𝑛𝑎𝑛 be an entire function.It is responsible to say that f 

operates on 𝔞 if∑ 𝑓𝑛𝑎𝑛  converges.It is even more responsible to say that entire functions operate on 𝔞 if ∑ 𝑓𝑛𝑎𝑛  

converges each time(𝑓𝑛) is the sequence of Taylors coefficients of an entire function and each time a ∈  𝔞 

 

It is clear that entire functions operate on 𝔞if 𝔞 is complete ,Locally m-convex if 𝔞is an inverse limit of Banach 

algebras. 

 

Theorem (2.1) 
 

Let 𝔞 be acommutative, Frechet algebra on which analytical functions operate. Then 𝔞  is locally   m-convex. 
The proof goes in two steps. We first prove the following lemma by a double category argument: 
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Lemma (1.1) 

Let 𝔞 be acomplete metrizable locally convex algebra.Assume that 𝜆𝑛𝑎𝑛 → 0 for every sequence of positive 

scalers 𝜆𝑛 such that To    𝜆𝑛

1

𝑛 → 0 each  neighbourhood  V of th origin in 𝔞we can associate a neighbourhood W 

such that 
 

V   ⊇ {𝑥𝑛: 𝑥 ∈ 𝑊, 𝑛 ∈ 𝑁, 𝑛⧧0} 
 

We start out with a closed convex balanced   neighbourhood   U of the origin and a sequence 𝜆𝑛 such that    𝜆𝑛

1

𝑛 is 

decreasing   and tends to zero. Let V be the set of a ∈ 𝔞 such that  𝜆𝑛𝑎𝑛 ∈ 𝑈for all n. Then V is closed and 

balanced, V is absorbing. Consider any   𝑎 ∈  𝔞, Since  𝜆𝑛𝑎𝑛 → 0, 𝜆𝑛𝑎𝑛 ∈ 𝑈 for all but a finite number of 

values of n. For those n,𝜆𝑛𝑎𝑛 ∈ ∈−1  𝑈 𝑓𝑜𝑟 ∈> 0, small .We take ∈< 1, 𝜆𝑛(∈ 𝑎)𝑛 ∈ 𝑈  for all n.So V has a 

non-empty interior. 

 

Let 𝑈1be a new neighbourhood of the origin such that U⊇ 𝑈1 . 𝑈1 .  Let 𝑉1 be the set of  

a∈  𝔞𝜆𝑛𝑎𝑛 ∈ 𝑈1for  all n≥ 1.Then 𝑉1has a non –empty interior. 

Let 𝑋 =
1

2(𝑎+𝑏)
 with a𝜖𝑉1 , 𝑏𝜖𝑉2, 𝑡ℎ𝑒𝑛  

𝜆𝑛𝑥𝑛 = 2−𝑛 ∑(
𝑛

𝑝
)

𝜆𝑛

𝜆𝑟 .𝜆𝑛−𝑟
𝜆𝑟𝑎𝑟𝜆𝑛−𝑟𝑏𝑛−𝑟. This belongs to U because   

 

𝜆𝑟𝑎𝑟𝜆𝑛−𝑟𝑏𝑛−𝑟 ∈ 𝑈, 𝜆𝑛 ≤ 𝜆𝑟𝜆𝑛−𝑟. 

(because 𝜆𝑛

1

2  is decreasing )and 2−𝑛 ∑(
𝑛

𝑟
) 

𝜆𝑟

𝜆𝑟 .𝜆𝑛−𝑟
≤ 1 

So V ⊇  
1

2(𝑉1+𝑣2)
 is a neighbourhood of the origin. 

 

This is half the proof of the lemma. We observe that we can associate to every sequence of complex numbers 𝑐𝑛  

such that |𝑐𝑛|
1

𝑛 → 0 a sequence of positive reals 𝜆𝑛 such that |𝑐𝑛| ≤ λn and (
1

n
)

1

n
decreases to zero. So, for every 

such sequences 𝑐𝑛 and every neighbourhood U of the origin, we can find a neighbourhood V of the origin such 

that 𝑐𝑛xn ∈ U each time x∈ 𝑉. 
 

To Prove the second half, we consider a neighbourhood U of the origin ,take U closed and convex ,and then a 

basis 𝑉1, … … … … … … … … … … . . , 𝑉𝑘 , … … … … … … … … …of neighbourhood of the origin in 𝔞. 

 

We   let 𝑋𝑘 be the set of sequences of scalars 𝑐𝑛 ,with |𝑐𝑛|
1

𝑛 → 0 and for all 𝑥 ∈ 𝑉𝑘 : 𝑐𝑛𝑥𝑛 ∈ 𝑈.Then 𝑥𝑘is 

absolutely convex ,closed in the space of entire functions, and 𝑈   𝑋𝑘 is the space of all entire functions. Baire’s  

theorem shows that 𝑋𝑘 must have an interior for large K. 

 

This gives constants 𝑀1  , 𝑀2 ,   and a neighbourhood 𝑉𝑘 of the origin, such that 𝑥𝑛 ∈ 𝑀1 . 𝑀2
𝑛 𝑈, whenever 𝑥 ∈

𝑉𝑘. And 𝑥𝑛 ∈ 𝑈if 𝑥 ∈
𝑉𝑘

𝑀1.𝑀2

. 

So the lemma is proved. 

 

To complete the proof, we shall use a rewording of the corollary theorem. 

 

Lemma (2.1): Let U and V be absolutely convex subsets of a commutative algebra. Assume that  𝑥𝑛 ∈ 𝑈 as 

soon as 𝑥 ∈ 𝑉, 𝑛 = 1,2,3 … … … … … … … … … … … ….An absolutely convex 𝑉1can be found with 𝑉1
2 ⊆ 𝑉1and ⊇

𝑉1 ⊇ (2𝑒)−1V. 

𝑉1is the absolutely convex hull of the set  of 𝑥1, … … … … … … … … … . , 𝑋𝑛 ,with ∀ 𝑛 ∶ 𝑥1 ∈
𝑉

2
𝑒, and n≥ 1.The 

corollary gives the result. 

 

Combining Theorem (1.1) and (2.1), we see that each neighbourhood U of the origin in 𝔞 

Contains a neighbourhood V, which is absolutely convex and idempotent. The algebra is locally multiplicatively 

convex. 
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3. CONTINUOUS INVERSE LOCALLY CONVEX ALGEBRAS 
 

Theorem (3.1)  
A commutative, locally convex, continuous inverse algebra is locally multiplicatively convex. It is possible to 

associate to each neighbourhood U of the origin in 𝔞a neighbourhood V in such a way that   

U⊇  {𝑥𝑛: 𝑛 ∈ 𝞜,𝑛⧧0 ,x∈ 𝑈. } 

 

Once this has been shown, we observe that U and V may be taken absolutely convex, Lemma (2.1) shows that 

an absolutely convex, idempotent 𝑉1can be found in such a way that 𝑈 ⊇ 𝑉1 ⊇ (2𝑒)−1𝑣,  and theorem (3.1) 

follows. 

 

So we must show that 𝑥𝑛 → 0 and ∈ 𝞜 ,𝑛⧧0 . We choose a neighbourhood of the origin 𝑈1 , such that 𝜌(𝑥) <
1/2. When 𝑥 ∈ 𝑈1 , then by the holomorphic functional calculus 

𝑥𝑛 =
1

2𝜋
∫ 𝑒 𝑖𝑛𝑡(1 − 𝑒 𝑖𝑡𝑥)−1𝑑𝑡.

2𝜋

0

 

If      𝑥 → 𝑜, (1 − 𝑒 𝑖𝑡𝑥)−1 → 1     uniformly, t∈ 𝐼𝑅  and 𝑥𝑛 → 0  uniformly,𝑛 ∈ 𝞜,𝑛⧧0  . 

 

4. THE EQUIREGULAR BOUNDEDNESS 

 
Let now 𝔞be a commutative B-algebra with unit. An element 𝑎𝔞 is regular if (𝑎 − 𝑎)−1 is defined an bounded 

for a large. 

 

Defination (4.1) 

A subset B of regular elements of 𝔞is equiregular if it is possible to find M>0 in such a way that a-B has an 

nverse when 𝑎 ∈ 𝐵  ,|𝑠 ′| ≥ 𝑀 

  

Theorem (4.1):  
B is an equiregular set if and only if it is possible to find some M such that 

{
𝑏𝑛

𝑀𝑛:𝑏 ∈ 𝐵, 𝑛 ⊕ 𝞜}  is a bounded set. 

 

Corollary: An equiregular set is bounded. Assume equiregular and assume B equiregular and assume (𝑎 − 𝑠)−1 

defined and bounded for |𝑠| ≥ 𝑀  and 𝑎 ∈ 𝐵,Then for all 𝑎 ∈ 𝐵, for all n, 

𝑎𝑛 =
𝑀𝑛

2𝜋
∫ 𝑒 𝑖𝑛𝑡(1 − 𝑀𝑒−𝑖𝑡𝑎)−1𝑑𝑡,

2𝜋

0

 𝑎𝑛𝑑 {
𝑎𝑛

𝑀𝑛
) 

𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑 𝑖𝑠 𝑏𝑜𝑢𝑛𝑑𝑒𝑑. 𝐼𝑓 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑒𝑙𝑦, 𝑡ℎ𝑖𝑠 𝑠𝑒𝑡 𝑖𝑠 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 , 𝑎𝑛𝑑  
|𝑎| ≥2M  then– ∑ 𝑎−𝑛−1𝑎𝑛 = (𝑎 − 𝑠)−1  belongs to the completant hull of this bounded set.It follows that B is 

an equiregular set. 

 

The set 𝔞𝑟of regular elements of a commutative B-algebra 𝔞is a sub-algebra of  𝔞. 
 

Theorem (4.2):  

The set of equiregular subsets of 𝔞𝑟is an algebra boundedness on 𝔞𝑟 . 
 

If B is equiregular, and if 𝐵1  is a completant bounded subset of  𝔞, then ∩∈>0 (𝐵+∈ 𝐵1 )  is equiregular . 

 

An analysis of the proof of the above theorem yields the uniform majorants that we need to prove the first part 

of the theorem (4.2). It is not more difficult to prove that the sum, or the product of equiregular sets is 

equiregular, then to show that the sum ,or the produ 𝑇𝑦𝑝𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 ℎ𝑒𝑟𝑒. ct of regular elements is regular. 
 

Let now B be equiregular. Let ᵴ ∈∩ (𝐵+∈ 𝐵1 ) with 𝐵1 completant,𝐵1 ⊇ 𝐵.  We choose M real, and 𝐵2  bounded  

in such a way that   (𝑎 − 𝑎)−1 ∈ 𝐵1 when |𝑠| ≥ 𝑀, 𝑎 ∈ 𝐵.Choose 𝑎𝑛 ∈ 𝐵, 𝑎𝑛 − ᵴ ∈ 2−𝑛𝐵1 . 
Then  (𝑎𝑛 − 𝑎)−1 − (𝑎𝑚 − 𝑠)−1 = (𝑎𝑚 − 𝑎𝑛)(𝑎𝑛 − 𝑠)−1(𝑎𝑚 − 𝑠)−1 ∈ (2−𝑚 + 2−𝑛)𝐵1𝐵2

2 . 
 

This shows that (𝑎𝑛 − 𝑠)−1 is Cauchy sequence of the Banach space 𝔞𝐵3
.𝐵3is completant. 𝐵3 ⊇ 𝐵1𝐵2

2. This 

sequence has a limit, which is an inverse of (a-s).This limit belongs to the closure of 𝐵2 in the Banach space 𝔞𝐵3
 

This completes the proof .It is yet to be known wheather the equiregular boundedness of a B-algebra is convex. 

A convex boundedness can be associated to every  vector space boundedness, its elements are the sets with a 

bounded convex hull. 
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Theorem (4.3): 
The convex boundedness associated to the equiregular bounddness is the allan boundedness of the algebra of 

regular elements. 

This is an straightforward application of lemma (2.1) .Let B be equiregular and convex .Choose M large enough, 

then𝐵1  convex, bounded and such that  
𝑥𝑛

𝑀𝑛 ∈ 𝐵1𝑤ℎ𝑒𝑛 𝑥 ∈ 𝐵1 , 𝑛 ∈ 𝞜.Let  𝐵1  be the absolutely convex hull of 

{
𝑥1…………….𝑥𝑛

(2𝑀𝑒)𝑛 : 𝑛 ∈ 𝞜,⩝𝒊: 𝒙𝟏 ∈ 𝑩} 

 

Then 𝐵2 is bounded, absolutely convex, and idempotent, and 𝐵 ⊆ 𝑀𝐵2 . 

 

5. CONCLUSION 
 
(1) Hence a commutative, locally convex, continuous inverse algebra is locally multiplicatively convex. 

(2) It is clear that the bounded, absolutely convex idempotent sets are equiregular, so the Allan boundedness is 

the convex boundednedd associated to the equiregular one. 
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