Print version ISSN 0970 6577 Online version ISSN 2320 3226 DOI: 10.5958/2320-3226.2022.00002.9

Original Article

Content Available online at: https://bpasjournals.com/math-and-stat/

On δ_{II}^* -semi-homeomorphisms in ideal Topological spaces

*A. Anis Fathima¹, M. Maheswari², V. Inthumathi³

Author's Affiliation:

¹Department of Mathematics, Gobi Art & Science College, Gobichettipalayam, Tamil Nadu- 638453, India.

E-mail: anisnazer2009@gmail.com

²Department of Mathematics, N.G.M College, Pollachi, Tamil Nadu- 642001, India.

E-mail: mahimrk@gmail.com

³Department of Mathematics, N.G.M College, Pollachi, Tamil Nadu- 642001, India.

E-mail: inthugops@yahoo.com

*Corresponding Author: A. Anis Fathima, Department of Mathematics, Gobi Art & Science College, Gobichettipalayam, Tamil Nadu- 638453, India.

E-mail: anisnazer2009@gmail.com

How to cite this article: Anis Fathima A, Maheswari M. and Inthumathi V. (2022). On δ_{IJ}^* -semi-homeomorphisms in ideal Topological spaces. *Bull. Pure Appl. Sci. Sect. E Math. Stat.* 41E(1), 5-10.

ABSTRACT

In this paper, the notions of δ_{I^-} semi-open, δ_{I^-} semi-closed, δ_{IJ^-} semi-homeomorphism and δ_{IJ}^* semi-homeomorphism functions are introduced and investigated some characterizations of these functions in ideal topological spaces.

KEYWORDS: δ_I - semi-open function, δ_I -semi-closed function, δ_{IJ} - semi - homeomorphism, δ_{IJ}^* -semi-homeomorphism.

Mathematics Subject Classification: 54A05.

1. INTRODUCTION

In 1968, N. V. Velicko [5] introduced δ -open set in topological spaces. In 2005, δ -open sets are introduced by S. Yuksel et al. [6] in ideal topological spaces. Kuratowski [3] and Vaidyanathasamy [4] introduced and studied an ideal concept in topological spaces. In this paper, the notions δ_I -semi-open functions, δ_I -semi-closed functions, δ_{IJ} - semi-homeomorphisms and δ_{IJ}^* - semi-homeomorphisms are introduced and study some of its properties in ideal topological spaces.

2. PRELIMINARIES

In this paper, X, Y and Z are always mean ideal topological spaces. For a subset Aof a space X, $sint_{\delta_I}(A)$ and $scl_{\delta_I}(A)$ denote δ_I -semi-interior and δ_I -semi-closure of A.

Definition 2.1. [1] A subset A of an ideal topological space (X, τ, I) is said to be δ_I -semi-open if $A \subseteq cl^*(int_{\delta}(A))$.

Definition 2.2. [2] A function $f:(X,\tau,I)\to (Y,\sigma)$ is said to be δ_I -semi-continuous if $f^{-1}(V)$ is δ_I -semi-open in (X,τ,I) for each open set V of (Y,σ) .

Definition 2.3. [2] A function $f:(X,\tau,I)\to (Y,\sigma,I)$ is said to be δ_I -semi- irresolute if inverse image of every δ_I -semi-open set in Y is δ_I -semi-open set in X.

3. δ_{l} -SEMI-OPEN AND δ_{l} -SEMI-CLOSED FUNCTIONS

Definition 3.1. A function $f:(X,\tau) \to (Y,\sigma,I)$ is called δ_I -semi-open (briefly $\delta_I s_{op}$) if for each open set U of X, f(U) is δ_I -semi-open in Y.

Definition 3.2. A function $f:(X,\tau) \to (Y,\sigma,I)$ is called δ_I -semi-closed (briefly $\delta_I s_{clo}$) if for each closed set U of X, f(U) is δ_I -semi-closed in Y.

Example 3.3. Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, \{d\}, \{a, c\}, \{a, c, d\}, X\}$ and let $Y = \{p, q, r\}$, $\sigma = \{\emptyset, \{p\}, \{q\}, \{p, q\}, \{q, r\}, Y\}$ and $I = \{\emptyset, \{p\}, \{q\}, \{p, q\}\}$. Let $f: (X, \tau) \to (Y, \sigma, I)$ be a function defined as f(a) = f(b) = q, f(c) = r and f(d) = p. Then f is $\delta_I s_{op}$.

Example 3.4. Let $X = \{a, b, c, d\}, \tau = \{\emptyset, \{d\}, \{a, c\}, \{a, c, d\}, X\}$ and let $Y = \{p, q, r\}, \ \sigma = \{\emptyset, \{q\}, \{r\}, \{q, r\}, Y\} \ and \ I = \{\emptyset, \{p\}\}\}$. Let $f: (X, \tau) \to (Y, \sigma, I)$ be a function defined as f(a) = f(c) = r, f(b) = p and f(d) = q. Then f is $\delta_I s_{clo}$.

Theorem 3.5. A function $f:(X,\tau)\to (Y,\sigma,I)$ is $\delta_I s_{op}$ if and only if for each $x\in X$ and each neighborhood U of x, there exists $V\in \delta_I SO(Y)$ containing f(x) such that $V\subseteq f(U)$.

Proof. Suppose that f is $\delta_l s_{op}$ For each $x \in X$ and each neighborhood U of x, there exists an open set, U_0 such that $x \in U_0 \subseteq U$. Since f is $\delta_l s_{op}$, $V = f(U_0) \in \delta_l SO(Y)$ and $f(x) \in V \subseteq f(U)$. Conversely, let U be an open set of X. For each $x \in U$, there exists $V_x \in \delta_l SO(Y)$ such that $f(x) \in V_x \subseteq f(U)$.

Therefore, we obtain $f(U) = \{V_x | x \in U\}$ and hence f(U) is $\delta_I s_{op}$ in Y, by Theorem 3.13 of [1]. This implies that f is $\delta_I s_{op}$.

Theorem 36. A bijective function $f:(X,\tau)\to (Y,\sigma,I)$ is $\delta_I s_{op}$ if and only if for each subset $W\subseteq Y$ and each closed set F of X containing $f^{-1}(W)$ there exists a δ_I -semi-closed set $H\subseteq Y$ containing W such that $f^{-1}(H)\subseteq F$.

Proof.

Necessity: Suppose that f is a δ_I sop function. Let W be any subset of Y and F is a closed subset of X containing $f^{-1}(W)$. Then F^c is open and since f is δ_I -semi-open, $f(F^c)$ is δ_I -semi-open in Y. Hence $H = [f(F^c)]^c$ is δ_I -semi-closed in Y. $f^{-1}(W) \subseteq F$ Implies that $W \subseteq H$. Moreover, we obtain $f^{-1}(H) = f^{-1}([f(F^c)]^c) = f^{-1}(f(F)) = F$. Hence, $f^{-1}(H) = F$.

Sufficiency: Let U be any open set of X and $W = [f(U)]^c$. Then $f^{-1}(W) = f^{-1}([f(U)]^c) = f^{-1}(f(U^c)) = U^c$ and U^c is closed. By hypothesis, there exists a δ_l -semi-closed set H of Y containing W such that $f^{-1}(H) \subseteq U^c$. Then we have $f^{-1}(H) \cap U = \emptyset$ and $H \cap f(U) = \emptyset$. Therefore we obtain $[f(U)]^c \supseteq H \supseteq W = [f(U)]^c$ and f(U) is δ_l -semi-open in Y. This shows that f is δ_l δ_l δ_l .

Theorem 3.7. For a function $f:(X,\tau)\to (Y,\sigma,I)$, the following are equivalent:

- 1. f is $\delta_I s_{clo}$.
- 2. For every subset A of X, $scl_{\delta_l}(f(A)) \subseteq f(cl(A))$.

Proof. $1 \Rightarrow 2$: Suppose that f is $\delta_l s_{clo}$ and $A \subseteq X$. then f(cl(A)) is $\delta_l s_{clo}$ in Y. We have $f(A) \subseteq f(cl(A))$ and $scl_{\delta_l}(f(A)) \subseteq scl_{\delta_l}(f(cl(A))) = f(cl(A))$.

2⇒1: Let *A* be any closed set in *X*. Then A = cl(A) and so $f(A) = f(cl(A)) \supseteq scl_{\delta_l}(f(cl(A)))$, by assumption. Therefore $f(A) = scl_{\delta_l}(f(A))$. Thus f(A) is $\delta_l s_{clo}$. Hence $f(a) = scl_{\delta_l}(f(A))$.

Theorem 3.8. For a function $f:(X,\tau) \to (Y,\sigma,I)$, the following are equivalent:

- 1. f is $\delta_I s_{clo}$.
- 2. For every subset A of X, $f(int(A)) \subseteq sint_{\delta_1}(f(A))$.

Proof. Obvious from the Theorem 3.7 and Theorem 3.36 [1].

Theorem 3.9. For any bijective function $f:(X,\tau,I)\to (Y,\sigma,I)$, the following are equivalent:

- 1. f^{-1} is δ_I -semi-continuous.
- 2. f is $\delta_I s_{op}$.
- 3. f is $\delta_I s_{clo}$.

Proof. $1 \Rightarrow 2$: Let U be a open set of X. Then, by assumption $(f^{-1})^{-1}(U) = f(U)$ is $\delta_I s_{op}$ in Y. Hence f is $\delta_I s_{op}$.

- 2 \Rightarrow 3: Let F be a closed set of X. Then F^c is open in X. Since f is $\delta_I s_{op}$, $f(F^c)$ is $\delta_I s_{op}$ in Y and so f(F) is $\delta_I s_{clo}$. Hence f is $\delta_I s_{clo}$.
- 3 \Rightarrow 1: Let *F* be a closed set of *X*. Then by assumption $f(F) = (f^{-1})^{-1}(F)$ is δ_I -semi-closed set in *Y*. Hence f^{-1} is δ_I -semi-continuous.

Definition 3.10. A function $f:(X,\tau) \to (Y,\sigma,I)$ is called δ_I^* -semi-open (briefly $\delta_I^* s_{op}$) if f(U) is $\delta_I s_{op}$ in Y for every δ -semi-open set U of X.

Definition 3.11. A function $f:(X,\tau)\to (Y,\sigma,J)$ is called δ_I^* -semi-closed (briefly $\delta_I^*s_{clo}$) if f(U) is δ_Is_{clo} in Y for every δ -semi-closed set U of X.

Example 3.12. Let
$$X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, X\} \text{ and } Y = \{p, q, r\}, \ \sigma = \{\emptyset, \{q\}, \{r\}, \{q, r\}, Y\}, \ I = \{\emptyset, \{p\}\}. \ Let \ f: (X, \tau) \to (Y, \sigma, I)$$
 be a function defined as $f(a) = q, f(b) = p$ and $f(c) = r$. Then f is $\delta_I^* s_{op}$ and $\delta_I^* s_{clo}$.

Theorem 3.13. For a function $f:(X,\tau) \to (Y,\sigma,I)$, the following are equivalent:

- 1. f is $\delta_I^* s_{clo}$.
- 2. For every subset A of X, $scl_{\delta_l}(f(A)) \subseteq f(\delta cl_s(A))$.

Proof. Similar to Theorem 3.7.

Theorem 3.14. For a function $f:(X,\tau) \to (Y,\sigma,I)$, the following are equivalent:

- 1. f is $\delta_I^* s_{op}$.
- 2. For every subset A of X, $f(\delta int_S(A)) \subseteq sint_{\delta_I}(f(A))$.

Proof. Obvious from the Theorem 3.13 and Theorem 3.36 [1].

Theorem 3.15. For any bijective function $f:(X,\tau) \to Y,\sigma,J)$, the following statements are equivalent:

- 1. f^{-1} is δ_I -semi-irresolute.
- 2. f is $\delta_I^* s_{op}$.
- 3. f is $\delta_I^* s_{clo}$.

Proof. $1 \Rightarrow 2$: Let U be a δ -semi-open set of X. Then, by assumption $(f^{-1})^{-1}(U) = f(U)$ is δ_I -semi-open in Y. Hence f is $\delta_I^* s_{op}$.

2 \Rightarrow 3: Let V be a δ -semi-closed set of X. Then V^c is δ_l -semi-open and by assumption, $f(V^c) = [f(V)]^c$ is $\delta_l s_{op}$ in Y. That is f(V) is $\delta_l s_{clo}$ in Y and so f(V) is $\delta_l s_{olo}$.

3 \Rightarrow 1: Let W be δ -semi-closed set of X. Then by assumption $f(W) = (f^{-1})^{-1}(W)$ is δ_I -semi-closed in Y. Hence f^{-1} is δ_I -semi-irresolute.

4. δ_{II} -SEMI-HOMEOMORPHISMS AND δ_{II}^* -SEMI-HOMEOMORPHISMS

Definition 41. A bijective function $f:(X,\tau,I)\to (Y,\sigma,J)$ is called δ_{IJ} -semi-homeomorphism (briefly $\delta_{IJ}s_{hom}$) if f is δ_{I} -semi-continuous and f^{-1} is δ_{I} -semi-continuous.

The family of all δ_I -semi-homeomorphisms of an ideal topological space (X, τ, I) onto itself is denoted by $S_{\delta_I}H(X, \tau, I)$ (or) $S_{\delta_I}H(X)$.

Example 4.2. Let $X = Y = \{a, b, c, d\}$, $\tau = \{\emptyset, \{d\}, \{a, c\}, \{a, c, d\}, X\}$, $\sigma = \{\emptyset, \{a\}, \{b, d\}, Y\}$ and $I = \{\emptyset, \{a\}, \{d\}, \{a, d\}\}, J = \{\emptyset, \{a\}\}\}$ respectively. Let $f : (X, \tau, I) \rightarrow (Y, \sigma, J)$ be a function defined by f(a) = d, f(b) = c, f(c) = b and f(d) = a. Then f is $\delta_{IJ}s_{hom}$.

Theorem 4.3. Let $f:(X,\tau,I) \to (Y,\sigma,J)$ be a bijective and δ_I -semi-continuous function. Then the following are equivalent.

- 1. f is $\delta_I s_{op}$.
- 2. f is $\delta_{II}s_{hom}$.
- 3. f is $\delta_I s_{clo}$

Proof. $1 \Rightarrow 2$. Let V be open in X. Then, by assumption $f(V) = (f^{-1})^{-1}(V)$ is δ_J -semi-open in Y. This shows that f^{-1} is δ_J -semi-continuous. Hence f is $\delta_{IJ}s_{hom}$.

- 2 \Rightarrow 3. Let F be a closed set in X. Then, by assumption $(f^{-1})^{-1}(F) = f(F)$ is
- δ_{J} -semi-closed in Y. Thus f is $\delta_{J}s_{clo.}$

3 \Rightarrow 1. Let *V* be open in *X*. Then *V* ^C is closed in *X*. By assumption, $f(V^C)$ is δ_I -semi-closed in *Y*. This implies that $(f(V))^C$ is δ_I -semi-closed in *Y* and so f(V) is δ_I -semi-open in *Y*. Hence $f(V)^C$ is δ_I -semi-closed in *Y* and so $f(V)^C$ is δ_I -semi-open in *Y*.

Definition 4.4. A bijective function $f:(X,\tau,I) \to (Y,\sigma,J)$ is called δ_{IJ}^* -semi-homeomorphism(briefly $\delta_{IJ}^*s_{hom}$) if and only if f is δ_I -semi-irresolute and f^{-1} is δ_J -semi-irresolute.

Example 4.5. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, X\}$, $I = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$ and let $Y = \{p, q, r\}, \sigma = \{\emptyset, \{q\}, \{r\}, \{q, r\}, Y\}, J = \{\emptyset, \{p\}\}$. Let $f: (X, \tau, I) \to (Y, \sigma, J)$ be a function defined by f(a) = r and f(b) = f(c) = q. Then f is $\delta_{IJ}^* S_{hom}$.

Remark 4.6. 1. The spaces (X, τ, I) and (Y, σ, J) are δ_{IJ}^* -semi-homeomorphic if there exists a $\delta_{IJ}^* s_{hom}$ from (X, τ, I) onto (Y, σ, J) .

2. The family of all δ_{IJ}^* -semi-homeomorphisms of an ideal topological Space (X, τ, I) onto itself is denoted by $S_{\delta_I}^* H(X, \tau, I)$ (or) $S_{\delta_I}^* H(X)$).

Proposition 4.7. If the bijective function $f: (X, \tau, I) \to (Y, \sigma, J)$ is a $\delta_{IJ}^* s_{hom}$ then, $scl_{\delta_I}(f^{-1}(B)) \subseteq f^{-1}(\delta cl_S(B))$ for every $B \subseteq Y$.

Proof: Since f is $\delta_{IJ}^* s_{hom}$ then f is δ_I -semi-irresolute and f^{-1} is δ_J -semi-irresolute. Let B be a subset of Y. Since $\delta cl_S(B)$ is δ -semi-closed in Y, f^{-1} ($\delta cl_S(B)$) is δ_I -semi-closed in X and so $scl_{\delta_I}((f^{-1})^{-1}(B) \subseteq (f^{-1})^{-1}(\delta cl_S(B))$, by Theorem 3.17 of [2].

Corollary 4.8. If $f:(X,\tau,I)\to (Y,\sigma,J)$ is a $\delta_{IJ}^*s_{hom}$, then $scl_{\delta_J}(f(B))\subseteq f(\delta cl_S(B))$ for every $B\subset X$

Proof. Since f is $\delta_{IJ}^* s_{hom}$, f^{-1} is also $\delta_{IJ}^* s_{hom}$. Then by Proposition 4.8 $scl_{\delta_J}((f^{-1})^{-1}(B) \subseteq (f^{-1})^{-1}(\delta cl_S(B))$ for every $B \subseteq X$. This implies, $scl_{\delta_J}(f(B)) \subseteq f(\delta cl_S(B))$.

Corollary 4.9. If $f:(X,\tau,I)\to (Y,\sigma,J)$ is a $\delta_{IJ}^*s_{hom}$, then $sint_{\delta_I}(f(B))\subseteq f(\delta int_S(B))$ for every

 $B \subseteq X$.

Proof. For any set $B \subseteq X$, $\delta int_S(B) = (\delta cl_S(B^c))^c$. $f(\delta int_S(B)) = f((\delta cl_S(B^c))^c) = (f(\delta cl_S(B^c)))^c$. Then by corollary 4.8, we see that $f(\delta int_S(B)) = (f(\delta cl_S(B^c)))^c = (scl_{\delta_I}(f(B^c)))^c = sint_{\delta_I}(f(B))$.

Corollary 4.10. If $f:(X,\tau,I)\to (Y,\sigma,J)$ is a $\delta_{IJ}^*S_{hom}$, then $sint_{\delta_J}(f^{-1}(B))\subseteq f^{-1}(\delta int_S(B))$ for every $B\subseteq Y$.

Proof. Since f^{-1} is also a $\delta_{II}^* s_{hom}$, the proof follows from Corollary 4.9.

Proposition 4.11. If $f:(X,\tau,I) \to (Y,\sigma,J)$ is $\delta_{IJ}^* s_{hom}$ and $g:(Y,\sigma,J) \to (Z,\gamma,K)$ is $\delta_{JK}^* s_{hom}$, then the composition $g_o f:(X,\tau,I) \to (Z,\gamma,K)$ is $\delta_{IK}^* s_{hom}$.

Proof. Let U be δ -semi-open in Z. Since f and g are $\delta_{IJ}^* s_{hom}$ and $\delta_{JK}^* s_{hom}$ respectively and every δ_I -semi-open set is δ -semi- we have $f^{-1}(g^{-1}(U)) = (g_o f^-)^{-1}(U)$ is δ_I -semi-open in X. This implies that $g_o f$ is δ_I -semi-irresolute. Also, $(g^{-1})^{-1}((f^{-1})^{-1}(G)) = ((g_o f^-)^{-1})^{-1}(G)$ is δ_K -semi-open in Z. This implies that $(g_o f^-)^{-1}$ is δ_K -semi-irresolute. Since f and g are $\delta_{IJ}^* s_{hom}$ and $\delta_{JK}^* s_{hom}$. f and g are bijective and so $g_o f$ is bijective. Hence $g_o f^-$ is $\delta_{IK}^* s_{hom}$.

Proposition 4.12. The set $S_{\delta_l}^* H(X, \tau, I)$ is a group under composition of functions.

Proof. Define a binary operation $*: S_{\delta_I}^* H(X,\tau,I) X S_{\delta_I}^* H(X,\tau,I) \to S_{\delta_I}^* H(X,\tau,I)$ by $f*g = (g_o f)$ for all $f,g \in S_{\delta_I}^* H(X,\tau,I)$ and o is the usual operation of composition of maps. Then by Proposition 4.11, $(g_o f) \in S_{\delta_I}^* H(X,\tau,I)$. We know that the composition of maps is associative and the identity map $I: (X,\tau,I) \to (X,\tau,I)$ belonging to $S_{\delta_I}^* H(X,\tau,I)$ serves as the identity element. For any $f \in S_{\delta_I}^* H(X,\tau,I)$, $f \circ f^{-1} = f^{-1} \circ f = I$. Hence inverse exists for each element of $S_{\delta_I}^* H(X,\tau,I)$. Thus $S_{\delta_I}^* H(X,\tau,I)$ forms a group under the operation, composition of functions.

Proposition 4.13. If $f:(X,\tau,I)\to (Y,\sigma,J)$ is a $\delta_{IJ}^*s_{hom}$. Then f induces an isomorphism from the group $S_{\delta_I}^*H(X,\tau,I)$ onto the group $S_{\delta_I}^*H(Y,\sigma,J)$.

Proof. Let $f \in S_{\delta_I}^* H(X, \tau, I)$. Then define a map $\chi_f : S_{\delta_I}^* H(X, \tau, I) \to S_{\delta_I}^* H(Y, \sigma, J)$ by $\chi_f(h) = f_o h_o f^{-1}$ for every $h \in S_{\delta_I}^* H(X, \tau, I)$. Then χ_f is bijective. Let $h_1, h_2 \in S_{\delta_I}^* H(X, \tau, I)$. Then $\chi_f(h_{1_0} h_2) = f_o(h_{1_0} h_2)_o f^{-1} = f_0(h_{1_0} f^{-1}_o f_o h_2)_o f^{-1} = (f_o h_{1_0} f^{-1})_o (f_o h_{2_0} f^{-1}) = \chi_f(h_{1_0} \chi_f(h_2))$. this shows that χ_f is an isomorphism.

Proposition 4.14. $\delta_{II}^* s_{hom}$ is an equivalence relation in the collection of all ideal topological spaces.

Proof. Reflexive and Symmetric properties are obvious and Transitive property follows from Proposition 4.11.

REFERENCES

- 1. Anis Fathima A, Inthumathi V. and Maheswari M. (2016). Weaker form of δ semi-open sets via ideals, International Journal of Mathematics And its Applications., 4(1-B), 29 35.
- 2. Inthumathi V, Maheswari M and Anis Fathima A. (2021). On δ_I -semi-continuous function in ideal topological spaces, Journal of Xidian University., 15(10), 174-183.
- 3. Kuratowski K. (1966). Topology, Vol. I, Academic Press, New York, (1966).
- **4.** Vaidyanathaswamy R. (1945). The localisation theory in set topology, Proc. Indian Acad. Sci., 20, 51-61.
- 5. Velicko N.V. (1968). H-closed Topological Spaces, Amer. Math. Soc. Transl., 78(2), 103-118.
- 6. Yuksel S, Acikgoz A and Noiri T. (2005). On δ I -continuous Functions, Turk. J. Math., 29, 39-51.
