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Abstract In the current scenario integral transforms is an interesting field for research
due to the wide applicability of the method of integral transforms in obtaining the an-
alytical solution of many problems of engineering, physical sciences, and space science,
etc. In this paper we determine the analytical primitive (solution) of a generalized Abel’s
integral equation by employing the Laplace-Carson transform method. For the purpose
of the applicability of this method we illustrate five numerical problems which are solved
with the help of the Lapalce-Carson transform method.
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1 Introduction

The solutions to the problems of electric circuits, spectroscopy, motion of a particle, seismology, growth
of the species, heat transfer, plasma physics, radioactive decay and vibration of strings can be easily
determined by developing their mathematical model by using the appropriate integral equations [1-5].
Integral equations frequently appear when initial or boundary value problems are expressed in the
terms of integrals. There are several analytical and numerical methods for obtaining the exact and
approximate solutions of integral equations. Integral transforms is one of them which provides us with
exact results. Chakrabarti [6] used direct function theoretic method and determined the solution of
the generalized Abel integral equation in compact form. Gorenflo and Luchko [7] applied operation
method on generalized Abel integral equation of second kind and determined its solution. Dixit et al. [8]
used almost Bernstein operational matrix method for determining the solution of the generalized Abel
integral equation. Zarei and Noeiaghdam [9] obtained the primitive of the generalized Abel’s integral
equations of the first and second kind by the use of the Taylor-Collocation method. Brunner [10]
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applied implicit interpolation on the generalized Abel integral equation and gave the global solution
of this problem. Atkinson [11] defined the existence theorem for Abel integral equations. Chakrabarti
and George [12] determined a formula for obtaining the solution of the general Abel integral equation.
Mahgoub [13] reintroduced (perhaps, mistakenly without being aware of its previous existence in the
literature) the Laplace-Carson transform by the name of the Mahgoub transform (see also, Upadhayaya
[32, subsection 4.10, p. 478]). Gupta [14] used the so-called Mahgoub transform (in fact the Laplace-
Carson transform) to solve the famous problem of mechanics, namely, the Abel problem. Aggarwal
and other scholars [15-21] applied different integral transforms (like, the Laplace, the Kamal, the
Mohand, the Aboodh, the Sumudu, the Shehu and the Sadik transforms) and solved the Abel problem
of mechanics. Chauhan and Aggarwal [22] considered linear partial integro-differential equations and
solved it using the Mahgoub (Laplace-Carson) transform. Linear ordinary differential equations with
variable coefficients were solved by Aggarwal et al. [23] using the Mahgoub transform. Aggarwal et
al. [24,25] fruitfully used the Mahgoub (Laplace-Carson) transform for obtaining the primitives of the
first and the second kind of Volterra integral equations. Aggarwal et al. [26] also studied the second kind
linear Volterra integro-differential equations and solved them completely by employing the Mahgoub
(Lapalce-Carson) transform. The Mahgoub (Laplace-Carson) transform was also used by Aggarwal et
al. [27] for obtaining the solution of the famous problem of population growth and decay. Aggarwal
and other researchers [28,29] determined the Mahgoub (Laplace-Carson) transforms of the Bessel
and the error functions. Aggarwal [30] also studied the Mohand and the Mahgoub (Laplace-Carson)
transforms by obtaining the solution of a system of simultaneous differential equations. Chauhan
et al. [31] studied the Laplace-Carson transform and determined its duality relations with the other
existing integral transforms. We also remark here that the Laplace-Carson transform and most of
the other currently existing variants of the classical Laplace transform in the mathematics research
literature are the special cases of the Upadhyaya transform developed by the second author [32] and
further updated by Upadhyaya et al. in [33].

The present study focuses on obtaining the exact solution of the generalized Abel’s integral equation
with the help of the Laplace-Carson transform method. We explain below the notaoions used by us in
this paper:

Nomenclature of symbols

Lc, the Laplace-Carson transform operator; Jo(t), Ji(t), J2(t), the Bessel functions of orders
€, belongs to; zero, one and two respectively;

N, the set of natural numbers ; erfv/t, the Error function;

R, the set of real numbers; £51, the inverse Laplace-Carson transform op-
!, the usual factorial notation; erator.

I", the classical gamma function;

Definition 1.1. Laplace-Carson transform of a function: The Laplace-Carson transform (which
was later mistakenly reintroduced as the Mahgoub transform (see [13], also see Upadhyaya [32] ) of a
sectionally continuous function H (¢) of exponential order for all ¢ > 0 is defined by the relation

Lol (O} =p [ HOd=h(), (1.1)
0

provided the integral on the right side of (1.1) exists.
Definition 1.2. Inverse Laplace-Carson transform of a function: If the Laplace-Carson trans-
form of a function H (¢t) is h(p) then the function H (¢) is known as the inverse Laplace-Carson
transform of h(p) and it is denoted by H (t) = L;'{h (p)}.
The useful properties of the Laplace-Carson transform, the Laplace-Carson transform of some basic
mathematical functions and their inverse Laplace-Carson transforms which are frequently encountered

in various applications and some of these will also be required by us in this paper are summarized
below for ready reference in the Tables 1-3 respectively.
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Table 1: Some useful properties of the Laplace-Carson transform.
S. No. | Name of the Property/ | Mathematical Form
Theorem
- Le{aHy (t) +bH (1)}

1. Linearit

Y = aLo (I (1)} +bLo (T (1)}
2. Change of Scale Lo {H (at)} =h (E)
3. Translation Lo {eatH } }% —a)
4. The First Derivative Lo{H' (t)} =ph(p) — ( )
5. The Second Derivative | Lo {H" (t)} = p*h (p) — p*H (0) — pH' (0)
6. The n'® Derivative Lo {H™ @)} = p'h(p) — p"H(0) —

p"HH (0) = ... = pH*D(0)

7. Convolution Lo{H (t)« Hy(t)} = Lot (t)}pﬁcgb O}

Table 2: The Laplace-Carson transform of some elementary mathematical functions.

2

S. No. H (1) Lc{H ()} =h(p)
1. t",n e NU{0} ol
2. t",n>-1,neR F(Z;rl)
3. et p%a
4. sin at p2_€a2
5. cosat pgﬂaz
6. sinh at p2a_pa2

2
7. cosh at a2

P
8. Jo(t) \/]TH i
9. Ji(t) p—

p°+1
10 Ja(t) p+2p3_2ﬁ(\/m>p2
) o

1

11. erfﬁ \/m

The Laplace-Carson transform method for the solution of the general-
ized Abel’s integral equation

The general form of generalized Abel’s integral equation is defined as

.............

F(x):/oz

u (t)
(z—1)"

dt,0 < a < 1,

(2.1)
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Table 3: The inverse Laplace-Carson transform of some elementary mathematical
functions.

S No. [ h(p) A0 = £ {0 )}
1. ? n € NU{0} &
tn
3. pLa et
4. P sin at
+ a
5. pfiag cosat
6. 2p 5 sinh at
pe—a a
7. p2_2a2 cosh at
8. P Jo(t)
/m2
9 . Ji(t
. b \/}TH 1( )
p+2p3—2<\/p2+1)p2
10. N Ja(t)
11. Jit erf\/t

where,
F (z) = the known function,
u (z) = the unknown function,
and
« = a constant.

Operating Lc on both sides of (2.1), we obtain

Lo{F(2)} = Lo {/OI (wu_(tt))adt} O<a<l,

= LoAF (@)} =Le{u(@)*2 "}, 0<a< 1. (2.2)
Use of the convolution theorem in (2.2) gives

Lo{F ()} = %cc {u(@)} Lo {z},0<a <1,

I'l—a)

:EC{F(x)}zz%ﬁc{u(x)} O<a<l,

iﬁc{u(x)}zﬁc{F(x)}ﬁ7O<a< 1,

éﬁc{u(ﬂr)}:%[,C{F(x)}r(a)rp(l_a) (;{fﬁ?) O<a<l,

= Lo{u(x)} = W Bﬂc {F(2)} Lo {xa*}} O<a<l,

= Lo{u()} = m::c{mx)ma*},o <a<l,

- r C_FQ®) N
:>£C{u(z)}7r(a)F(1—a)£c{/o (x—t)l‘“dt}’0< <
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= Lof{u(z)} = mﬁc {(u(z)},0<a<l, (2.3)
where,
u(z) = / %dt,o <a<l. (2.4)
0 (33 — t)
Now,
Lo {p' ()} = pLe {u(@)} — pu(0),
= Lo{p' (@)} =pLe{pn(2)} —0=pLo{n()},
1 /
= Lo {u(@) = Lo (i @)} (2.5)
Now, from (2.3) and (2.5), we have
1 '

Operating £ on both sides of (2.6), we obtain

1 /
1 d
= |5 1.
= u(x) T )T (=a) [dmu(ﬂc)],0<a<
Use (2.4) in the above equation, we have
1 d [* F(@4) }
u(@)= —————|— ———dt| ,0<a<l
() ()T (1-—a) {dm/o (x—t)'™®
Using the result I' (a) T’ (1 — @) = (55=),0 < a < 1 in the last equation, we get
u(m):SIHOﬂT[i/ L{_adt],0<a<1,
T dz J, (x —1t)

which gives the exact solution of (2.1).

3 Illustrative applications

We now present below five illustrative examples for explaining the applicability of the proposed method.

4

)= [ e

On taking the Laplace-Carson transform on both sides of (3.1), we have

- 52

= %CC {334/3} =Lc {u(m) * :p’@/?’)} .

Use of the convolution theorem in above equation gives

OT(1/3) 1
4 pi/s :gﬁc{u(m)}cc{x e

ra/m 1 I'(1/3)
i = 550 {u ()} /3

Example 3.1. Consider (2.1) with F (z) = 2 (954/3) and a = 2/3 as

(3.1)
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= Lofu@} =

On taking the inverse Laplace-Carson transform of the above equation we obtain

w(z) = L5} {%} — 2,

which gives the exact solution of (3.1).
5
24 ( 5/6) /” u (t)
— |z = ———dt. 3.2
5 o (z— t)1/6 (32)
Operating by the Laplace-Carson transform operator on both the sides of (3.2), we have
24 5/6 z u (t)
P T IO
5 o (z—1t)"°

= %ﬁc {xS/G} =Lc {u (z) * x_(1/6)} .

The use of the convolution theorem in the above equation yields

Example 3.2. Consider (2.1) with F (z) = 2 (x5/6) and a = 1/6 as

BLAO Lo fu@p e {+00),
r(5/6) £ (5/6)

=4

1
P5/6 = ;EC {u ()} p—(176)
= Lo{u(x)} =4

Operating now the last equation by L',El we obtain
u(z) = Lo' {4} = 4Lc" {1} =4,

which gives the exact solution of (3.2).

Example 3.3. Consider (2.1) with F (z) = 2 (w9/5) and o = 1/5 as
25 9/5) /z u (t)
— = ———dt. 3.3
36 (w 0 (IE . t)1/5 ( )
On taking the Laplace-Carson transform of both the sides of (3.3), we have
25 9/5\ _ / T u(®)
36'60{‘” }’CC{ ; (m,t)l/sdt ;

= g—gﬁc {xg/s} =Lc {u (z) * mf(l/m} .

An application of the convolution theorem to the above equation provides

25T (14/5) 1 s
36 5 = ];Ec{u(m)}ﬁc {:c a/ )},
r4/5 1 T (4/5)
po/5 = ;EC {u(x)} m
= Lofu(@) = 1,

which on inverting with the invesre Laplace-Carson transform yields the following exact solution of

(3.3).
u(z) = £ {%} —
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31

128 ¢ a1ya) 16 0 ey _ /”” u(t)
231 (”J ) t o (m ) “Jo @t dt. (3.4)
Taking the Laplace-Carson transform of both the sides of (3.4) gives
128 11/4 16 7/4 /ac u (t)
-0 — = ——dt
231 ~¢ {m }+21£C {x } SAWA P

= %Ec {m“/4} + gﬁc {ﬂc7/4} =Lc {u (z) * 90_(1/4)} ,

which on utilizing the convolution theorem gives

Example 3.4. Consider (2.1) with F (z) = 323 (x11/4) + 18 (ﬂc7/4) and a = 1/4 as

128T(15/4) |, 16T (11/4) 1 —(1/4)
e R _Eac{u@)}ﬂc{m %

r'(3/4) T (3/4) 1 T (3/4)
=2 pli/d pT/a = ;Ec {u (@)} p—(1/4),
2 1

Inverting the above equation by the inverse Laplace-Carson transform yields the following exact solution

of (3.4)
u(z) =L {3 + 1}

P> p

11 11 2
u(z) =2Ls {I?} + Lo {5} =z +uzx
Example 3.5. Consider (2.1) with F (z) =3 (xl/?’) mand o =2/3 as
3 (x1/3> ™= / Ldt. 3.5
o (z—1)?3 (35)
As above an application of the Laplace-Carson transform to both the sides of (3.5) gives
srLe {a'*} = Lo / ) g\
o (z—1t)*?

= 3nLlc {xl/g} =Lc {u(o:) * x_(2/3)} .

Now the use of the convolution theorem in the previous equation gives

(/3 _1 e
3m pVE 75£c{u(x)}£c{x (/3)},
' (1/3) 1 r(1/3)
= 1717 = ;ﬁc {u(z)} m:

= Le{u(z)} =m,

which on inverting with the operator Eal gives the following exact solution of (3.5)

w(z) =L {r}=aL ' {1} =7

nnnnnnnnnnn
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4 Conclusions

In this paper, the authors used Laplace-Carson transform technique for finding the analytical solution
of the generalized Abel’s integral equation. The practical applicability of the method is demonstrated
by considering five illustrative examples, which shows that the Laplace-Carson transform method is a
handy technique for dealing with the generalized Abel’s integral equation and in future efforts can be
made for obtaining the primitive of a system of generalized Abel’s integral equations by employing this
tool.

Acknowledgments The author is thankful to the referees and to the Editor-in-Chief for their in-
sightful comments which led to an improvement in this paper.
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