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Abstract The commutation relations of quantum mechanics have a classical limit
equal to the Poisson brackets if the coefficient is generalized to be a complex rather than
purely imaginary. The effect on the uncertainty relations is described. The complex
number may be identified with a modular variable and the quantization is derived from
topology.
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1 Introduction

It is well known that the classical commutation relations, defined for the momentum and space vari-
ables through the Poisson bracket, are valid for any two differentiable functions on phase space. The
quantum commutator is constructed to be the operator equivalent of the Poisson brackets, and repre-
sents the transformation from fields that are functions on the space-time coordinates to operator-valued
distributions. A difference that is immediately evident in the commutation relations is the presence of
real and imaginary classical and quantum brackets respectively. The limit of a vanishing coefficient
of the quantum commutation relations is an Abelian algebra. Consistency with the Poisson brackets
of classical field theory can be achieved if the quantum commutator is a complex number with a real
classical limit.
This complex number might be regarded as a modular variable. Deformations of the complex struc-
ture on the torus are parametrized by the modulus with a range that is the upper half-plane. The
formulation of the operator commutators in terms of this modular variable reflects a connection be-
tween quantization and topology. The discreteness of the topology of surfaces therefore will result in
a quantization of the coefficients in the commutators and the spectrum of the operators.

2 A modular variable in the quantum commutation relations

The classical Poisson bracket of two functions on phase space, F (q, p) and G(q, p), is

{F,G}P.B. =
∂F

∂qi

∂G

∂pi
− ∂F

∂pi

∂G

∂qi
(2.1)
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and

{qi, pj}P.B. = δij . (2.2)
The quantum commutation relation between the position and momentum variables is given by the
substitution pi → −i~ d

dqi
. Then

[qi, pj ]f(q)→ qi

(
−i~ d

dqj

)
f(q) + ~ d

dqj
(qif(q)) = i~δijf(q) (2.3)

and

[qi, pj ] = i~δij (2.4)
as an operator relation. The limit ~→ 0 of this commutator is an Abelian algebra and does not produce
the classical Poisson bracket.
Therefore, a consistent classical limit is derived if the coefficient is replaced by a complex number,
κ = κ0+i~. Although κ0 would have to be set equal to one for the position and momentum coordinates,
more general values could occur for other functions on phase space.
Suppose that p̃j = −iγj∂j− i~∂j . Then [xi, p̃j ] = (iγj + i~)δij . In the limit ~→ 0, p̃j → −iγj∂j , where
γj , j = 1, 2, 3 are Dirac gamma matrices. The adjoint of this operator is

(p̃j)
†
~→0 = (−iγj∂j)

† = i(∂j)
†(γj)† = −i(∂j)†γj (2.5)

since γj † = γ0γjγ0 = −γj . The adjoint of the commutation relation [xi, (p̃j)~→0] = iγjδij is

(xi(p̃j)~→0 − (p̃j)~→0xi)
† = (p̃j)

†
~→0x

†
i − x

†
i (p̃j)

†
~→0 (2.6)

= (p̃j)
†
~→0xi − xi(p̃j)

†
~→0

= (iγjδij)
† = −i(γj)†δij = iγjδij .

The consistency of the adjoint relation and that of the commutator [xi, pj ] = −i~δij both depend on
the interpretation of the adjoint of the derivative operator.
The inner product for two quantum mechanical state vectors represented by complex wavefunctions is

⟨ψ|η⟩ =
∫
d3xψ̄η. (2.7)

If the state vectors are spinors, then the integral is
∫
d3xψ̄T η. Representing the Hilbert space as the

space of square integrable wavefunctions in Cn, where n is the number of components of the spinors,

〈
ψA†|η

〉
=

∫
d3x

(
ψ̄
←
A

†
)T

η =

∫
d3x(A†ψ)

T
η =

∫
d3xψ̄TAη = ⟨ψ|Aη⟩ . (2.8)

Then ⟨ψA|η⟩ = ⟨ψ|Aη⟩ for a Hermitian operator.
The commutation relation [xi, pj ] = i~δij would be consistent under the adjoint operation only if pj is
Hermitian, which requires a differentiation between (∂j)

† and ∂j . It is evident for two square integral
functions ψ1, ψ2 which vanish at infinity, that

∫
d3xψ1∂j

←
ψ2 = −

∫
d3xψ1∂jψ2 +

∫
dxidxkψ1ψ2

∣∣∣∣∞xj=−∞
j ̸=i, k

. (2.9)

= −
∫
d3xψ1∂jψ2.

Therefore, the operator (∂j)
† can be interpreted to be the negative of the operator ∂j in the space of

square integrable functions with the above inner product. It follows that the operator i~∂j is equivalent
to −i~∂j

←
, and
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〈
ψ
←
p j |η

〉
=

∫
d3xψ (x)

(
−i~

←
∂ j

)
η (x) =

∫
d3xi~∂jψ̄ (x) η (x)

=

∫
d3xψ̄ (x) (−i~∂j) η (x) = ⟨ψ|pjη⟩

(2.10)

after integration by parts, which verifies the Hermiticity of pj as an operator in this space.
Similarly,

〈
ψ
←−−
(p̃j)~→0|η

〉
=

∫
d3xψ (x) |

(
−iγj

←
∂ j

)
η (x) =

∫
d3x∂jψ̄ (x) i

(
γj
)†
η (x)

=

∫
d3x∂jψ̄ (x)

(
−iγj

)
η (x) =

∫
d3xψ̄ (x) iγj∂jη (x)

= −
∫
d3xψ̄

(
−iγj∂j

)
η (x) = −

〈
ψ|(p̃j)~→0η

〉
(2.11)

after integration by parts. Given the anti-Hermiticity of (p̃j)~→0, the validity of (2.6) follows, with
(p̃j)~→0xi − xi(p̃j)~→0 = [xi, (p̃j)~→0].
Suppose that the imaginary coefficient of the gamma matrix in the commutator is replaced by κ0 ∈ R.
Then p̃j = −κ0γ

j∂j − i~∂j is Hermitian. The adjoint of the relation [xi, p̃j ] = (κ0γ
j + i~)δij yields

[xi, p̃j ]
† =

{
(κ0γ

j + i~)δij
}†

= (iγj − i~)δij . (2.12)

3 The uncertainty principle

The uncertainty principle [1] may be derived from the inequality

∆A ·∆B ≥ 1

2
|⟨[A,B]⟩| (3.1)

when ⟨{A,B}⟩ ∈ R and ⟨[A,B]⟩ ∈ iR [2], since AB = 1
2
{A,B} + 1

2
[A,B], and then, |⟨AB⟩|2 =

1
4
⟨{A,B}⟩2+ 1

4
|⟨[A,B⟩|2, since the Cauchy-Schwarz inequality |⟨AB⟩|2 ≤ ⟨A2⟩⟨B2⟩ yields 1

4
|⟨[A′, B′]⟩|2 ≤

⟨A′2⟩⟨B′2⟩, which gives (2.1) after setting A′ = A− ⟨A⟩I and B′ = B − ⟨B⟩I.
Another inequality [3]

(∆A)2(∆B)2 ≥
∣∣∣∣ 12i ⟨[A,B]⟩

∣∣∣∣2 (3.2)

may be used for the generalized commutation relations. Beginning with the commutator [xi, p̃j ] =
(κ0γ

j + i~)δij , and including a trace for matrix elements in [xi, p̃i],

Tr

∣∣∣∣⟨ 12i (κ0γi + i~)
∣∣∣∣2 =

1

4
Tr ⟨(−iκ0γi + ~)†(−iκ0γi + ~)⟩ (3.3)

=
1

4
Tr ⟨(iκ0(γ

j)† + ~)(−iκ0γ
j + ~)⟩

=
1

4
Tr ⟨(−iκ0(γ

j) + ~)2⟩

=
1

4
Tr ⟨(−κ2

0(γ
j)2 − 2iκ0~γj + ~2)⟩

=
1

4
⟨(κ2

0I− 2iκ0~γj + ~2)⟩

=
1

4
(4κ2

0 + ~2).

It follows that

Tr (∆xi)
2(∆p̃i)

2 ≥ 1

4
(4κ2

0 + ~2). (3.4)
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Since p̃i is represented by a differential operator that includes matrix coefficients, ∆pi also will have
matrix coefficients multiplying the uncertainty in the eigenvalues of the derivative and the trace of the
square will be a numerical value. Then the generalized uncertainty principle is[

Tr (∆xi)
2(∆p̃j)

2

] 1
2

≡ (∆xi)(∆p̃j)Tr ≥
1

2
(4κ2

0 + ~2)
1
2 δij . (3.5)

Since κ0 has the units of action, its minimum value can be taken to be ~. Then the lower bound for
the product of uncertainties summed over coordinates of the gamma matrix would be

(∆xi)(∆p̃j)Tr ≥
√
5

2
~δij . (3.6)

An increase in the minimum value of the product of the uncertainties of conjugate variables would be
consistent with the various entropic and experimental effects discussed in [4–6].
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