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Abstract In this paper, we introduce new contractive mappings in the setup of com-
pleteness and uniqueness of fixed point theorem on b-metric space. We improve the recent
fixed point results established by Agrawal et al. (Agrawal, S., Qureshi, K. and Nema, J.,
A fixed point theorems for b-metric space, IJPAM, 9(1), 2016, 45-50). We also show that
different contractive type mappings exist in b-metric space.
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1 Introduction

Fixed points theory has become an important field in mathematics due to its variety of applications in
science, economics and game theory. Metric fixed point theory has been an area of vigorous scientific
activity since the basic result of Banach [4] in 1922. It is well known that the Banach contraction
principle is a fundamental result in the fixed point theory which has been used and extended in many
different directions.

In 1989 the concept of b-metric space was introduced by I.A. Bakhtin [3] as a generalization of metric
space and he proved an analogue of the Banach contraction principle in b-metric space. In 1993,
Czerwik [8] extended the results of b-metric spaces. Since then, several papers have dealt with the
generalization of the renowned Banach fixed point theorem in the b-metric space such as [2,5-7,9].

In this paper we extend some well know fixed point theorems which are also valid in the b-metric space.
An analogy result of Agrawal et al. [1] is also proved.
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2 Preliminaries

Definition 2.1. Let X be a non-empty set and s > 1 be a given real number. If a functiond : X x X —
R™T satisfies the following conditions:

(b1) d(z,y) =0iff z =y,

(b2) d(z,y) = d(y, ),
(b3) d(z,z) < s[d(:v,y) + d(y,z)] for all z,y,z € X,

then the pair (X, d) is called a b-metric space.

Definition 2.2. Let (X, d) be a b-metric space. Then

(a) asequence {z,}in X is called b-convergent if and only if there exists € X such that d(zn,z) — 0
as n — oo.

(b) {z»} in X is said to be b-Cauchy if and only if d(zn,Zm) — 0 as n,m — oco.

(c) the b-metric space (X, d) is called b-complete if every b-Cauchy sequence in X is b-convergent.

Example 2.3. [6]. The set L,(R) (with 0 < p < 1), where [,(R) = {(xn) CRst D00 Jenl’ < oo}
together with function d : [,(R) X I,(R) — R,

oo 1/p
d(z,y) = (Z |z — yn”)

n=1

where © = z,, ¥y = yn € [,(R) is a b-metric space. By an elementary calculation we obtain that
d(w,2) < 2"/%[d(w,y) + d(y, =)

Example 2.4. [6]. The space L,[0, 1] (where 0 < p < 1) of all real functions z(t), ¢t € [0, 1] such that
fol |z(t)|P dt < oo is a b-metric space if we take

1 1/
d(z,y) = (/ |z(t) —y(®)|” dt) p, for each z,y € L,[0,1]
0
The following two examples also show the importance of the b-metric space.

Example 2.5. Let X =N, defined: X x X — X by
0, if =1y,
d(z,y) =< 4o, if z,ye{1,2}and z#vy,
a, ifzory¢{l,2}and z #y,

where a > 0 is a constant. Then (X, d) is a b-metric space with coefficient s = 3 > 1 but (X, d) is not
a metric space as d(1,2) = 4a > 2a = d(1, 3) + d(3, 2).

Example 2.6. Let X =N, define d : X x X — X such that d(z,y) = d(y,z) Vz,y € X and
0, if z =y,
d(z,y) =< b5a, ifx=19y=2,
a, if ze€{1,2}and y € {3},

where a > 0 is a constant. Then (X, d) is a b-metric space with coefficient s = 2 > 1 but (X, d) is not
a metric space as d(1,2) = ba > 2a = d(1, 3) + d(3, 2).

Note: Every metric space is a b-metric space with coefficient s = 1 but the converse of this implication
is not true.
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3 Main Result

Theorem 3.1. Let (X,d) be a complete b-metric space. Let T be a self map on X and satisfying for
any x,y € X such that

d(Tz, Ty) < amax{d(z,y), GEHEET0Y 4 b{d(z, Tx) + d(y, Ty)} (3.1)

where a,b > 0 such that a + 2bs <1 and s > 1. Then T has a unique fized point.

Proof. Let zo € X and {z,}n2; be a sequence in X defined by recursion
T =Txp_1=T"20; n=1,2,3,.... (3.2)
From (3.1) and (3.2), we obtain that

d(xn_l, Tzn_l)d(mn, Txn)
1 +d(Tmn,1,Tmn)

+ b d(@n1, Tn) + d(wn, Trnr) |

d(mn,xn+1) = d(Txn_l,Txn) < amax{d(mn_l,xn),

d(xnfly xn)d(xru xn+1) }

d(TﬁE’nthxn) < amax{d(xnl,mn)7 1 +d(x x )
nybn+l

+ b{d(flsnfl,anrl) + d(:rn,xn)}

Since
d(xn—la fL’n)d(l'n, xn+1)

<d Tn—1,Tn),
T+ d(n, 7ner) (Zn-1,2n)

then we get

d(Txn—l,Txn) < ad(xn—lyxn) + bd(xn—lyxn-!—l)
d(xm:cnﬂ) < ad(wnfl,mn) + sb [d(:cnfl,xn) + d(mn,mnﬂ)} (by (b3) of Definition 2.1)
= ad(ajn,h xn) + sbd(wn,hxn) + sbd(xn7 $n+1)

(1- bs)d(acmxnﬂ) <(a+ bs)d(mnfl, zn)
(a+bs)
d(x'rux'rH-l) S TbSd("En—ly xn)
= d(xm:cnﬂ) < kd(xn,hxn), where k= (;fzj <1
S de(xn,Q, xnfl).
Continuing the above process, we get
d(l‘n,wn+1) S knd(l‘o,ém) (3.3)

On taking the limit as n — oo, we obtain that

d(acn,:an) — 0 as n — oo.

nnnnnnnnnnn
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Now, we show that {z,}32, is a Cauchy sequence in X. Let m,n € N, m > n, then
d(wn,2m) < 5{d(@n,0ns1) + (i1, 2m) }
< s{d(@n, zui1) } + 57 d(@ns1, 7r2) + d(wnsz, 2n) |
< s{d(wn, 2ni1) } + 5 {d(@nsr, onre) |+ 5 {d(wnsz, o) |
s{d(@n,oni1) } + 5 {d(@ns1,0002) } + 5*{d(@nr2,20ss) + d(wnss,0m) |

sk”{l +sk+ 82K+ 85k 4+ ...}d(mo,xl)

INIA

IN

sk"d(a:o,a:1){1 + sk + (sk)2 + (sk)3 + }
sk"d(xo,m1)
- (1 — sk:)

On taking the limit as n — oo, we have

n

lim d(mn,mm) =0 as n,m — oo, since <1,

hence {zn}n=; is Cauchy sequence in X.
Since X is complete then J v in X s.t.

lim z, = u(e X).
n— oo
Now, we show that u is the fixed point of T'. As
d(u,Tu) < s{d(u7 :an) + d(rn+17Tu)} (by (b3) of Definition 2.1)

d(2n, Txn)d(u, Tu) }

< s{d(u,wn+1)} +samax{d(a:n,u), 1+d(Tx Tu)

+ sb{d(mn, Tu) + d(u, Tmn) }

= sd(u,an) + sa max {d(xn,u),

d(xn, xn+1)d(u, Tu) }

1+ d(xn+1,Tu)
+ sb{d(mn, Tu) + d(u, mn+1)}

< sd(u, xn+1) + sa max {d(xn, u),

d(azn, xn+1)d(u, Tu) }

1 —|—d(mn+1,Tu)

+ s2b{d(mn, u) + d(u7 Tu)} + sbd(u7 $n+1)

_ g2 d($n7$n+1)d(u,Tu)
(1 s b)d(u, Tu) <s(l+ b)d(u,an) + sa max {d(xn,u), o d(xn+1,Tu)

+ szd(mn, u)

= (1- szb)d(u,Tu) < s(1+b)d(u, zns1) + saMs + Sde(CL’n, u) (3.4)
where
ny n 7T
My = max d(ﬂcn,u), d(x ’ +1)d(u u)
1 —+ d(ibn_t,_l, TU)
< max {d(mn, u),d(xn, xn+1)d(u, Tu) }
32 EAs
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Case-(i): If My = d(xn,u) then from (3.4), we get

(1 — SQb)d(u Tu) <s(l+ b)d(u, IL‘n.H) + sa d(xn, u) + szd(xn, u)
(1 — s2b)d(u Tu) <s(l+ b)d(u7 wnH) + (sa + st)d(xn,u)
= d(u, T

)< S (sa+ )

— s2b)d(u’ Tni1) + (1— s2b)

d(xn,u).

Taking the limit as n — oo, we get

s(14+b) sa+sb < 1).

lim d(u,Tu) =0, (since (1 —s%)" (1= %)

n—00

Hence w is the fixed point of T.

Case-(ii): If My = d(@n, zn+1)d(u, Tw), then from (3.3) we obtain that
" My < k"d(wo,z1)d(u, Tu), since k < 1.
On taking the limit as n — oo, we have Mz — 0. Then as
(1 —sb)d(u, Tu) < s(1 +b)d(u, Tny1) + 8°b d(zn,u)
= d(u,Tu) < % (li:b%)

On taking the limit as n — oo, we get that v is a fixed point of T in X.

d(u,xn+1) + d(wn,u).

Uniqueness of the fixed point: Assume that v and v are two distinct fixed points of T. Then from
(3.2), we have that

d( ) = d(Tu Tv)
:amax{ ( ),(u’Tu)d(U’TU)}—i-b{d(%Tv)—l—d(v,Tu)}
1+ d(Tu, TU)
=(a+ 2b)d(u,v) < d(u, u),
which is a contradiction. Thus v = v. O
Theorem 3.2. Let (X,d) be a complete b-metric space. Let T be a self map on X satisfying for any
x,y € X such that

d(z, Tz)d(y, Ty) d(z, Tz)d(y, Ty)
14+d(z,y) ~ 14d(Tz,Ty) } 4 b{d(e, Ty) + dly, Tz)} (3.5)
+ min {d(z, Txz),d(z, Ty),d(y, Tz),d(y, Ty) }

where a,b > 0 such that a +2bs < 1 and s > 1. Then T has a unique fixed point.

d(Tz, Ty) < amax{d(z,y),

Proof. Let 2o € X and {x,}n=1 be a sequence in X defined by the recursion relation
Tp =Txpn_1 =T "z0; n=1,2,3,4,.... (3.6)
From (3.5) and (3.6) we get
d(a:nfl,Ta:nfl)d(a:mTa;n)
1+ d(xn,h mn)

d(.%‘nfl, Twnfl)d(itny T-Tn)
14+ d(Twn-1,Tzn)

)

d(acn,aan) = d(Tmnfl,Tmn) < amax {d(mnl,xn)7

+0{d(wn-1,T2n) + d(w0, Toa1) }
+ min {d(mnfla Txnfl) s d(xnfly T-Tn)7

d(acn7 Ta:n_l), d(mn, Txn)}
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d(Tzn-1,Trn) < amax < d(zn_1,2n), d{@n1,20)d(2n, 2n11) ) d{@n-1,20)d(@n, 2n11)
1+d(xn_1,xn) 1+d(:ﬂn,:€n+1)
+ b{d(mn_l, $n+1) d(mn,xn)} + min {d(xn_l,a)n), d(xn_l,acn.,.l),
d(zn, zn xn, Tnt1 }
d(Txn 1,Txn) < amax{d Ty 1,xn),d(xn,mn+1)} + b{d(mn_l,xnﬂ)
+ min {d xn_l,xn),d(xn 1,xn+1),0,d(azn,xn+1)}
< amax {d(xn_l, n), d(xn, Sﬂn+1)} +b d(ﬂcn_l, xn+1)
< amax {d T 1,mn), d(mn,xn+1)} + sb{d(:vnH, xn),d(mn,mnﬂ)}
Then
(1- sb)d(mn,mn+1) < gmax {d(mn_l, xn), d(xn7 $n+1)} + sb{d(mn+1,xn)}. (3.7)
Now the following two cases arise:
Case-(i): If max {d(mn_l,:cn), d(ﬂcn,xn_l)} = d(mn, zn+1), then from (3.7) we have that
(1 —sb)d(zn, n+1) < ad(Tn, Tnt+1) + sbd(Tn-1, Tn)
(1—a—0bs)d(xn,Tn+1) < bsd(Tn—1,Tn)
= (]__Zis_bs)d(x"—lz il'n) = k"d(xn—h Jin)
where, k = ﬁ < 1, thus,
d(mn,mnﬂ) <k d(acn,hxn) < kzd(acn,%xn,l) <. < k"d(:cm:m).
On taking the limit as n — oo, we get
d(xmxm) —0 as n — oo. (3.8)

Case-(ii): If max {d(xn_l,xn),d(xn, 1’n+1)} = d(@n,Tn—1), then from (3.7) it follows that
(1 = bs)d(zn, n+1) < (a+ bs)d(Tn-1,n)

a+ bs
mny n g
d@n en1) S G5

d(mnfh xn)

where, k = 4535 < 1,
= d(wman) <k d(mnfl,mn) < de(mn72,xn71) <. <L k"d(xo,xl).
On taking the limit as n — oo, we get that
d(mn,mnH) — 0 as n — oo.

Now, we show that {z,}32; is a Cauchy sequence in X. Let m,n € N, m > n, then
d(wn,2m) < s{d(@n,00s1) + (i1, 2m) }
A(2n, @m) < 5 d(zn, Tni1) + 32{d(1’n+1,mn+2) n d(anrg,xm)}
< sd(
< sd(zn, Tnt1) + 87 d(Tnt1, Tng2) + 8°d(Tng2, Tugs) + ...
< sk™d(zo, 1) + s°k"d (2o, 1) + k"2 d (20, 1) + ...
< sk™d(zo, 1) [1 + sk + (sk)? + (sk)® + }

n

1— sk

Ty Tnt1) + 5°d(Tns1, Tyo) + 87 d(Tnt2, Tm)

IA

d(azo,xl).

0«‘ AS
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Then lim,_ o0 d(mn,xm) =0asn,m—oo,and k <1,
n
i

d(zo,z1) =0 as n,m — oo.

Hence {:cn}?f:l is a Cauchy sequence in X and since X is complete then 3 v € X such that lim, o n =
u(€ X). Now, we show that u is a fixed point of T'. For this we have,

d(u, Tu) < s{d(u, $n+1) + d(:rn+1,Tu)}
< sd(u, an) + sd(Tgvn7 Tu)

< sd(u,@ni1) + samax {d(mn,u)7 d{@n Tan)d(w, Tu) d(n, Ton)d(w, Tu) }

1+d(:cn7u) ’ 1+d(T:cn7Tu)
+ sb{d(xn, Tu) + d(u, T:En)} + smin {d(mn,Txn),d(mn,Tu),d(u, Txn), d(u, Tu)}

d(azn,xn+1)d(u,Tu) d(mn,xn+1)d(u,Tu)
1+d(:rn,u) ’ 1+d(xn+1,Tu)

= sd(u,an) + sa max {d(zn,u),

+ sb{ d(@n, Tu) + d(u,@ns1) |+ smin {d(wn, 2041), d(0n, Tu), d(u, 20s1),d(u, Tu) |
< sd(u, wns1) + samax {d(wn, u), d(wn, 2i1)d(w, Tu) } + sb] d(wn, Tu) +d(u, 2011) |
< sd(u, wns1) + samax {d(wn, v), d(wn, 2i1)d(w, Tu) } +5°{ d(wn,u) + d(w, Tu) |

+ sbd(u, Tny1)

(1 — sgb)d(u,Tu) <s(l1+ b)d(u, xn.,.l) + sa max {d(wn,u), d(mn,xn.,_l)d(u, Tu)}
+ 5% d(xn,u)

(1- s2b)d(u7 Tu) < s(1+b)d(u, zns1) + saMz + s%b d(zn,u) (3.9)

where, My = max {d(mn,u),d(xn,xn+1)d(u,Tu)}, which gives rise to the following two cases for
discussion depending on the value of M5 in this expression:
Case I: If My = d(zn,u) then from (3.9), we get
(1 — szb)d(u, Tu) < s(1+ b)d(u, an) + sa d(xn,u) + 5% d(mn,u)
=s(1+ b)d(u, zn+1) + (sa + szb)d(:cn,u)
s(1+0b) (sa+ s°b)

B () ()

cl(u7 xn+1) + d(xn,u).

On taking the limit as n — oo, we get d(u, Tuw) = 0. Hence u is a fixed point of 7" in X.
Case II: If M, = d(xn,anrl)d(u,Tu) then from (3.8), we get d(mn,an) < k”d(wo,m)
o My = k‘nd(xo,ml)d(u, Tu) — 0 as n — oo since k < 1.
Then from (3.9), we obtain that
(1- SQb)d(u, Tu) < s(1+ b)d(u, Tng1) + $2bd(zn, u)
s(1+0b) s%b

=d(u,Tu) < (1= s%) (1_75%)

d(u,xnﬂ) + d(a:n,u).

Now taking the limit as n — oo, we get

lim d(u,Tu) = 0.

n—r00

Hence u is a fixed point of T

nnnnnnnnnnn
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Uniqueness of the fixed point: We have to show that w is a unique fixed point of T'. Suppose on
the contrary that there are two distinct fixed points u and v of T. Then Tu = u and Tv = v and u # v,
thus follows that
d(u,v) = d(Tu,Tv)
d(u, Tu)d(v,Tv) d(u,Tu)d(v,Tv)
1+d(u,v) 7 1+d(Tu,Tv)
+ min{d(u, Tu), d(u, Tv), d(v, Tu),d(v, Tv)}
< amax{d(u,v), d(u,u)d(v,v),d(u,u)d(v,v)} + b{d(u,v) + d(v,u)}
+ min{d(u, u), d(u,v), d(v,u), d(u,v)}
< ad(u,v) + 2bd(u, v)
= d(u,v) < (a + 2b)d(u,v),

< amax{d(u,v), } 4+ o{d(u, Tv) + d(v, Tu)}

which is a contradiction. Therefore, u = v. Hence u is a unique fixed point of T'. O
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