

Bull. Pure Appl. Sci. Sect. E Math. Stat. ${\bf 40E}(1), 18-25 (2021)$ e-ISSN:2320-3226, Print ISSN:0970-6577 DOI: 10.5958/2320-3226.2021.00003.5 ©Dr. A.K. Sharma, BPAS PUBLICATIONS, 115-RPS- DDA Flat, Mansarover Park, Shahdara, Delhi-110032, India. 2021

Bulletin of Pure and Applied Sciences Section - E - Mathematics & Statistics

Website: https://www.bpasjournals.com/

Some fixed point theorems on b-metric spaces *

Jayesh Tiwari^{1,†}, Dileep Kumar Sharma² and Koti NVV Vara Prasad³

- Department of Computer Science, Shri Vaishnav Institute of Management, Devi Ahilya University, Indore, Madhya Pradesh-452009, India.
 - Department of Mathematics, Government Polytechnic College, Barwani, Madhya Pradesh-451551, India.
 - 2. Department of Technical Education, Bhopal, Madhya Pradesh, India.
 - 3. Department of Mathematics, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh-495009, India.
 - 1. E-mail: $_{\mbox{\ensuremath{\boxtimes}}}$ jayesh_tiwari2005@yahoo.com
- $2. \ E-mail: \ dileep.ksharmadec 1972@gmail.com\ ,\ 3. \ E-mail: \ kvaraprasad 71@gmail.com$

Abstract In this paper, we introduce new contractive mappings in the setup of completeness and uniqueness of fixed point theorem on b-metric space. We improve the recent fixed point results established by Agrawal et al. (Agrawal, S., Qureshi, K. and Nema, J., A fixed point theorems for b-metric space, IJPAM, 9(1), 2016, 45–50). We also show that different contractive type mappings exist in b-metric space.

Key words b-metric space, fixed point, contraction mappings.

 $\textbf{2020 Mathematics Subject Classification} \qquad 47 \text{H} 109,\ 47 \text{H} 10,\ 54 \text{H} 25.$

1 Introduction

Fixed points theory has become an important field in mathematics due to its variety of applications in science, economics and game theory. Metric fixed point theory has been an area of vigorous scientific activity since the basic result of Banach [4] in 1922. It is well known that the Banach contraction principle is a fundamental result in the fixed point theory which has been used and extended in many different directions.

In 1989 the concept of b-metric space was introduced by I.A. Bakhtin [3] as a generalization of metric space and he proved an analogue of the Banach contraction principle in b-metric space. In 1993, Czerwik [8] extended the results of b-metric spaces. Since then, several papers have dealt with the generalization of the renowned Banach fixed point theorem in the b-metric space such as [2,5-7,9]. In this paper we extend some well know fixed point theorems which are also valid in the b-metric space. An analogy result of Agrawal et al. [1] is also proved.

^{*} Communicated, edited and typeset in Latex by Lalit Mohan Upadhyaya (Editor-in-Chief). Received December 27, 2019 / Revised March 12, 2021 / Accepted April 02, 2021. Online First Published on June 30, 2021 at https://www.bpasjournals.com/.

[†]Corresponding author Jayesh Tiwari, E-mail: jayesh_tiwari2005@yahoo.com

2 Preliminaries

Definition 2.1. Let X be a non-empty set and $s \ge 1$ be a given real number. If a function $d: X \times X \to \mathbb{R}^+$ satisfies the following conditions:

- (b₁) d(x,y) = 0 iff x = y,
- (b₂) d(x,y) = d(y,x),
- (b₃) $d(x,z) \le s[d(x,y) + d(y,z)]$ for all $x, y, z \in X$,

then the pair (X, d) is called a b-metric space.

Definition 2.2. Let (X, d) be a b-metric space. Then

- (a) a sequence $\{x_n\}$ in X is called b-convergent if and only if there exists $x \in X$ such that $d(x_n, x) \to 0$ as $n \to \infty$.
- (b) $\{x_n\}$ in X is said to be b-Cauchy if and only if $d(x_n, x_m) \to 0$ as $n, m \to \infty$.
- (c) the b-metric space (X, d) is called b-complete if every b-Cauchy sequence in X is b-convergent.

Example 2.3. [6]. The set $L_p(\mathbb{R})$ (with $0), where <math>l_p(\mathbb{R}) = \left\{ (x_n) \subset \mathbb{R} \text{ s.t. } \sum_{n=1}^{\infty} |x_n|^p < \infty \right\}$ together with function $d: l_p(\mathbb{R}) \times l_p(\mathbb{R}) \to \mathbb{R}$,

$$d(x,y) = \left(\sum_{n=1}^{\infty} |x_n - y_n|^p\right)^{1/p}$$

where $x=x_n,\ y=y_n\in l_p(\mathbb{R})$ is a b-metric space. By an elementary calculation we obtain that

$$d(x,z) \le 2^{1/p} \Big[d(x,y) + d(y,z) \Big].$$

Example 2.4. [6]. The space $L_p[0,1]$ (where 0) of all real functions <math>x(t), $t \in [0,1]$ such that $\int_0^1 |x(t)|^p dt < \infty$ is a b-metric space if we take

$$d(x,y) = \left(\int_0^1 |x(t) - y(t)|^p dt\right)^{1/p}$$
, for each $x, y \in L_p[0,1]$

The following two examples also show the importance of the b-metric space.

Example 2.5. Let $X = \mathbb{N}$, define $d: X \times X \to X$ by

$$d(x,y) = \begin{cases} 0, & \text{if } x = y, \\ 4\alpha, & \text{if } x, y \in \{1, 2\} \text{ and } x \neq y, \\ \alpha, & \text{if } x \text{ or } y \notin \{1, 2\} \text{ and } x \neq y, \end{cases}$$

where $\alpha > 0$ is a constant. Then (X, d) is a b-metric space with coefficient $s = \frac{4}{2} > 1$ but (X, d) is not a metric space as $d(1, 2) = 4\alpha > 2\alpha = d(1, 3) + d(3, 2)$.

Example 2.6. Let $X = \mathbb{N}$, define $d: X \times X \to X$ such that $d(x, y) = d(y, x) \ \forall \ x, y \in X$ and

$$d(x,y) = \begin{cases} 0, & \text{if } x = y, \\ 5\alpha, & \text{if } x = 1, y = 2, \\ \alpha, & \text{if } x \in \{1, 2\} \text{ and } y \in \{3\}, \end{cases}$$

where $\alpha > 0$ is a constant. Then (X, d) is a b-metric space with coefficient $s = \frac{5}{2} > 1$ but (X, d) is not a metric space as $d(1, 2) = 5\alpha > 2\alpha = d(1, 3) + d(3, 2)$.

Note: Every metric space is a b-metric space with coefficient s=1 but the converse of this implication is not true.

3 Main Result

Theorem 3.1. Let (X,d) be a complete b-metric space. Let T be a self map on X and satisfying for any $x,y \in X$ such that

$$d(Tx, Ty) \leqslant a \max\{d(x, y), \frac{d(x, Tx)d(y, Ty)}{1 + d(Tx, Ty)}\} + b\{d(x, Tx) + d(y, Ty)\}$$
(3.1)

where a, b > 0 such that $a + 2bs \le 1$ and $s \ge 1$. Then T has a unique fixed point.

Proof. Let $x_0 \in X$ and $\{x_n\}_{n=1}^{\infty}$ be a sequence in X defined by recursion

$$x_n = Tx_{n-1} = T^n x_0; \ n = 1, 2, 3, \dots$$
 (3.2)

From (3.1) and (3.2), we obtain that

$$d(x_n, x_{n+1}) = d(Tx_{n-1}, Tx_n) \le a \max \left\{ d(x_{n-1}, x_n), \frac{d(x_{n-1}, Tx_{n-1})d(x_n, Tx_n)}{1 + d(Tx_{n-1}, Tx_n)} + b \left\{ d(x_{n-1}, Tx_n) + d(x_n, Tx_{n-1}) \right\} \right\}$$

$$d(Tx_{n-1}, Tx_n) \le a \max \left\{ d(x_{n-1}, x_n), \frac{d(x_{n-1}, x_n)d(x_n, x_{n+1})}{1 + d(x_n, x_{n+1})} \right\}$$
$$+ b \left\{ d(x_{n-1}, x_{n+1}) + d(x_n, x_n) \right\}$$

Since

$$\frac{d(x_{n-1}, x_n)d(x_n, x_{n+1})}{1 + d(x_n, x_{n+1})} < d(x_{n-1}, x_n),$$

then we get

$$d(Tx_{n-1}, Tx_n) \leq ad(x_{n-1}, x_n) + bd(x_{n-1}, x_{n+1})$$

$$d(x_n, x_{n+1}) \leq ad(x_{n-1}, x_n) + sb\Big[d(x_{n-1}, x_n) + d(x_n, x_{n+1})\Big] \quad \text{(by } (b_3) \text{ of Definition 2.1)}$$

$$= ad(x_{n-1}, x_n) + sbd(x_{n-1}, x_n) + sbd(x_n, x_{n+1})$$

$$(1 - bs)d(x_n, x_{n+1}) \leq (a + bs)d(x_{n-1}, x_n)$$

$$d(x_n, x_{n+1}) \leq \frac{(a + bs)}{1 - bs}d(x_{n-1}, x_n)$$

$$\Rightarrow d(x_n, x_{n+1}) \leq kd(x_{n-1}, x_n), \quad \text{where} \quad k = \frac{a + bs}{1 - bs} \leq 1$$

$$\leq k^2 d(x_{n-2}, x_{n-1}).$$

Continuing the above process, we get

$$d(x_n, x_{n+1}) \le k^n d(x_0, x_1) \tag{3.3}$$

On taking the limit as $n \to \infty$, we obtain that

$$d(x_n, x_{n+1}) \to 0$$
 as $n \to \infty$.

(3.4)

Now, we show that $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence in X. Let $m, n \in \mathbb{N}, m > n$, then

$$d(x_{n}, x_{m}) \leq s \Big\{ d(x_{n}, x_{n+1}) + d(x_{n+1}, x_{m}) \Big\}$$

$$\leq s \Big\{ d(x_{n}, x_{n+1}) \Big\} + s^{2} \Big\{ d(x_{n+1}, x_{n+2}) + d(x_{n+2}, x_{m}) \Big\}$$

$$\leq s \Big\{ d(x_{n}, x_{n+1}) \Big\} + s^{2} \Big\{ d(x_{n+1}, x_{n+2}) \Big\} + s^{2} \Big\{ d(x_{n+2}, x_{m}) \Big\}$$

$$\leq s \Big\{ d(x_{n}, x_{n+1}) \Big\} + s^{2} \Big\{ d(x_{n+1}, x_{n+2}) \Big\} + s^{3} \Big\{ d(x_{n+2}, x_{n+3}) + d(x_{n+3}, x_{m}) \Big\}$$

$$\leq s k^{n} \Big\{ 1 + s k + s^{2} k^{2} + s^{3} k^{3} + \ldots \Big\} d(x_{0}, x_{1})$$

$$\leq s k^{n} d(x_{0}, x_{1}) \Big\{ 1 + s k + (s k)^{2} + (s k)^{3} + \ldots \Big\}$$

$$\leq \frac{s k^{n} d(x_{0}, x_{1})}{(1 - s k)}.$$

On taking the limit as $n \to \infty$, we have

$$\lim_{n \to \infty} d(x_n, x_m) = 0 \text{ as } n, m \to \infty, \text{ since } \frac{sk^n}{1 - sk} < 1,$$

hence $\{x_n\}_{n=1}^{\infty}$ is Cauchy sequence in X.

Since X is complete then $\exists u \text{ in } X \text{ s.t.}$

$$\lim_{n \to \infty} x_n = u (\in X).$$

Now, we show that u is the fixed point of T. As

$$d(u,Tu) \leq s \Big\{ d(u,x_{n+1}) + d(x_{n+1},Tu) \Big\} \qquad \text{(by (b_3) of Definition 2.1)}$$

$$\leq s \Big\{ d(u,x_{n+1}) \Big\} + sa \max \Big\{ d(x_n,u), \frac{d(x_n,Tx_n)d(u,Tu)}{1+d(Tx_n,Tu)} \Big\}$$

$$+ sb \Big\{ d(x_n,Tu) + d(u,Tx_n) \Big\}$$

$$= sd(u,x_{n+1}) + sa \max \Big\{ d(x_n,u), \frac{d(x_n,x_{n+1})d(u,Tu)}{1+d(x_{n+1},Tu)} \Big\}$$

$$+ sb \Big\{ d(x_n,Tu) + d(u,x_{n+1}) \Big\}$$

$$\leq sd(u,x_{n+1}) + sa \max \Big\{ d(x_n,u), \frac{d(x_n,x_{n+1})d(u,Tu)}{1+d(x_{n+1},Tu)} \Big\}$$

$$+ s^2b \Big\{ d(x_n,u) + d(u,Tu) \Big\} + sbd(u,x_{n+1})$$

$$(1-s^2b)d(u,Tu) \leq s(1+b)d(u,x_{n+1}) + sa \max \Big\{ d(x_n,u), \frac{d(x_n,x_{n+1})d(u,Tu)}{1+d(x_{n+1},Tu)} \Big\}$$

$$+ s^2bd(x_n,u)$$

 $\Rightarrow (1 - s^2 b)d(u, Tu) \le s(1 + b)d(u, x_{n+1}) + saM_2 + s^2 bd(x_n, u)$

where

$$M_{2} = \max \left\{ d(x_{n}, u), \frac{d(x_{n}, x_{n+1})d(u, Tu)}{1 + d(x_{n+1}, Tu)} \right\}$$

$$\leq \max \left\{ d(x_{n}, u), d(x_{n}, x_{n+1})d(u, Tu) \right\}.$$

Case-(i): If $M_2 = d(x_n, u)$ then from (3.4), we get

$$(1 - s^{2}b)d(u, Tu) \leq s(1 + b)d(u, x_{n+1}) + sa d(x_{n}, u) + s^{2}bd(x_{n}, u)$$

$$(1 - s^{2}b)d(u, Tu) \leq s(1 + b)d(u, x_{n+1}) + (sa + s^{2}b)d(x_{n}, u)$$

$$\Rightarrow d(u, Tu) \leq \frac{s(1 + b)}{(1 - s^{2}b)}d(u, x_{n+1}) + \frac{(sa + s^{2}b)}{(1 - s^{2}b)}d(x_{n}, u).$$

Taking the limit as $n \to \infty$, we get

$$\lim_{n \to \infty} d(u, Tu) = 0, \text{ (since } \frac{s(1+b)}{(1-s^2b)}, \frac{sa+s^2b}{(1-s^2b)} < 1).$$

Hence u is the fixed point of T.

Case-(ii): If $M_2 = d(x_n, x_{n+1})d(u, Tu)$, then from (3.3) we obtain that

$$\therefore M_2 \le k^n d(x_0, x_1) d(u, Tu), \quad \text{since } k < 1.$$

On taking the limit as $n \to \infty$, we have $M_2 \to 0$. Then as

$$(1 - s^2 b) d(u, Tu) \le s(1 + b) d(u, x_{n+1}) + s^2 b d(x_n, u)$$

$$\Rightarrow d(u, Tu) \le \frac{s(1 + b)}{(1 - s^2 b)} d(u, x_{n+1}) + \frac{s^2 b}{(1 - s^2 b)} d(x_n, u).$$

On taking the limit as $n \to \infty$, we get that u is a fixed point of T in X.

Uniqueness of the fixed point: Assume that u and v are two distinct fixed points of T. Then from (3.2), we have that

$$d(u,v) = d(Tu,Tv)$$

$$= a \max \left\{ d(u,v), \frac{d(u,Tu)d(v,Tv)}{1+d(Tu,Tv)} \right\} + b \left\{ d(u,Tv) + d(v,Tu) \right\}$$

$$= (a+2b)d(u,v) < d(u,u),$$

which is a contradiction. Thus u = v.

Theorem 3.2. Let (X,d) be a complete b-metric space. Let T be a self map on X satisfying for any $x,y \in X$ such that

$$d(Tx, Ty) \leqslant a \max\{d(x, y), \frac{d(x, Tx)d(y, Ty)}{1 + d(x, y)}, \frac{d(x, Tx)d(y, Ty)}{1 + d(Tx, Ty)}\} + b\{d(x, Ty) + d(y, Tx)\}$$

$$+ \min\{d(x, Tx), d(x, Ty), d(y, Tx), d(y, Ty)\}$$
(3.5)

where a,b>0 such that $a+2bs\leq 1$ and $s\geq 1$. Then T has a unique fixed point.

Proof. Let $x_0 \in X$ and $\{x_n\}_{n=1}^{\infty}$ be a sequence in X defined by the recursion relation

$$x_n = Tx_{n-1} = T^n x_0; \ n = 1, 2, 3, 4, \dots$$
 (3.6)

From (3.5) and (3.6) we get

$$d(x_{n}, x_{n+1}) = d(Tx_{n-1}, Tx_{n}) \le a \max \left\{ d(x_{n-1}, x_{n}), \frac{d(x_{n-1}, Tx_{n-1})d(x_{n}, Tx_{n})}{1 + d(x_{n-1}, x_{n})}, \frac{d(x_{n-1}, Tx_{n-1})d(x_{n}, Tx_{n})}{1 + d(Tx_{n-1}, Tx_{n})} \right\} + b \left\{ d(x_{n-1}, Tx_{n}) + d(x_{n}, Tx_{n-1}) \right\} + \min \left\{ d(x_{n-1}, Tx_{n-1}), d(x_{n}, Tx_{n}), d(x_{n-1}, Tx_{n}), d(x_{n}, Tx_{n-1}), d(x_{n}, Tx_{n}) \right\}$$

$$d(Tx_{n-1}, Tx_n) \leq a \max \left\{ d(x_{n-1}, x_n), \frac{d(x_{n-1}, x_n)d(x_n, x_{n+1})}{1 + d(x_{n-1}, x_n)}, \frac{d(x_{n-1}, x_n)d(x_n, x_{n+1})}{1 + d(x_n, x_{n+1})} \right\}$$

$$+ b \left\{ d(x_{n-1}, x_{n+1}) + d(x_n, x_n) \right\} + \min \left\{ d(x_{n-1}, x_n), d(x_{n-1}, x_{n+1}), d(x_n, x_n), d(x_n, x_{n+1}) \right\}$$

$$d(Tx_{n-1}, Tx_n) \leq a \max \left\{ d(x_{n-1}, x_n), d(x_n, x_{n+1}) \right\} + b \left\{ d(x_{n-1}, x_{n+1}) + \min \left\{ d(x_{n-1}, x_n), d(x_{n-1}, x_{n+1}), 0, d(x_n, x_{n+1}) \right\} \right\}$$

$$\leq a \max \left\{ d(x_{n-1}, x_n), d(x_n, x_{n+1}) \right\} + b \left\{ d(x_{n-1}, x_n), d(x_n, x_{n+1}) \right\}$$

$$\leq a \max \left\{ d(x_{n-1}, x_n), d(x_n, x_{n+1}) \right\} + sb \left\{ d(x_{n-1}, x_n), d(x_n, x_{n+1}) \right\}$$

Then

$$(1-sb)d(x_n, x_{n+1}) \le a \max \left\{ d(x_{n-1}, x_n), d(x_n, x_{n+1}) \right\} + sb \left\{ d(x_{n+1}, x_n) \right\}. \tag{3.7}$$

Now the following two cases arise:

Case-(i): If
$$\max \left\{ d(x_{n-1}, x_n), d(x_n, x_{n-1}) \right\} = d(x_n, x_{n+1})$$
, then from (3.7) we have that
$$(1 - sb)d(x_n, x_{n+1}) \leqslant ad(x_n, x_{n+1}) + sbd(x_{n-1}, x_n)$$

$$(1 - a - bs)d(x_n, x_{n+1}) \leqslant bsd(x_{n-1}, x_n)$$

$$= \frac{bs}{(1 - a - bs)}d(x_{n-1}, x_n) = kd(x_{n-1}, x_n)$$

where, $k = \frac{bs}{(1-a-bs)} \le 1$, thus,

$$d(x_n, x_{n+1}) \le k d(x_{n-1}, x_n) \le k^2 d(x_{n-2}, x_{n-1}) \le \dots \le k^n d(x_0, x_1).$$

On taking the limit as $n \to \infty$, we get

$$d(x_n, x_m) \to 0 \text{ as } n \to \infty.$$
 (3.8)

Case-(ii): If $\max \{d(x_{n-1}, x_n), d(x_n, x_{n+1})\} = d(x_n, x_{n-1})$, then from (3.7) it follows that $(1 - bs)d(x_n, x_{n+1}) \leq (a + bs)d(x_{n-1}, x_n)$

$$d(x_n, x_{n+1}) \leqslant \frac{a+bs}{(1-bs)} d(x_{n-1}, x_n)$$

where, $k = \frac{a+bs}{(1-bs)} < 1$,

$$\Rightarrow d(x_n, x_{n+1}) \le k \, d(x_{n-1}, x_n) \le k^2 d(x_{n-2}, x_{n-1}) \le \dots \le k^n d(x_0, x_1).$$

On taking the limit as $n \to \infty$, we get that

$$d(x_n, x_{n+1}) \to 0$$
 as $n \to \infty$.

Now, we show that $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence in X. Let $m, n \in \mathbb{N}, m > n$, then

$$d(x_{n}, x_{m}) \leq s \Big\{ d(x_{n}, x_{n+1}) + d(x_{n+1}, x_{m}) \Big\}$$

$$d(x_{n}, x_{m}) \leq s d(x_{n}, x_{n+1}) + s^{2} \Big\{ d(x_{n+1}, x_{n+2}) + d(x_{n+2}, x_{m}) \Big\}$$

$$\leq s d(x_{n}, x_{n+1}) + s^{2} d(x_{n+1}, x_{n+2}) + s^{2} d(x_{n+2}, x_{m})$$

$$\leq s d(x_{n}, x_{n+1}) + s^{2} d(x_{n+1}, x_{n+2}) + s^{3} d(x_{n+2}, x_{n+3}) + \dots$$

$$\leq s k^{n} d(x_{0}, x_{1}) + s^{2} k^{n+1} d(x_{0}, x_{1}) + s^{3} k^{n+2} d(x_{0}, x_{1}) + \dots$$

$$\leq s k^{n} d(x_{0}, x_{1}) \Big[1 + s k + (s k)^{2} + (s k)^{3} + \dots \Big]$$

$$\leq \frac{s k^{n}}{1 - s k} d(x_{0}, x_{1}).$$

Then $\lim_{n\to\infty} d(x_n, x_m) = 0$ as $n, m \to \infty$, and k < 1,

$$\lim_{n \to \infty} \frac{sk^n}{1 - sk} d(x_0, x_1) = 0 \text{ as } n, m \to \infty.$$

Hence $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence in X and since X is complete then $\exists u \in X$ such that $\lim_{n\to\infty} x_n = u \in X$. Now, we show that u is a fixed point of T. For this we have,

$$\begin{split} d(u,Tu) &\leq s \Big\{ d(u,x_{n+1}) + d(x_{n+1},Tu) \Big\} \\ &\leq s d(u,x_{n+1}) + s a \max \left\{ d(x_n,u), \frac{d(x_n,Tx_n)d(u,Tu)}{1+d(x_n,u)}, \frac{d(x_n,Tx_n)d(u,Tu)}{1+d(Tx_n,Tu)} \right\} \\ &+ s b \Big\{ d(x_n,Tu) + d(u,Tx_n) \Big\} + s \min \left\{ d(x_n,Tx_n), d(x_n,Tu), d(u,Tx_n), d(u,Tu) \right\} \\ &= s d(u,x_{n+1}) + s a \max \left\{ d(x_n,u), \frac{d(x_n,x_{n+1})d(u,Tu)}{1+d(x_n,u)}, \frac{d(x_n,x_{n+1})d(u,Tu)}{1+d(x_{n+1},Tu)} \right\} \\ &+ s b \Big\{ d(x_n,Tu) + d(u,x_{n+1}) \Big\} + s \min \Big\{ d(x_n,x_{n+1}), d(x_n,Tu), d(u,x_{n+1}), d(u,Tu) \Big\} \\ &\leq s d(u,x_{n+1}) + s a \max \Big\{ d(x_n,u), d(x_n,x_{n+1})d(u,Tu) \Big\} + s b \Big\{ d(x_n,Tu) + d(u,x_{n+1}) \Big\} \\ &\leq s d(u,x_{n+1}) + s a \max \Big\{ d(x_n,u), d(x_n,x_{n+1})d(u,Tu) \Big\} + s^2 b \Big\{ d(x_n,u) + d(u,Tu) \Big\} \\ &+ s b d(u,x_{n+1}) \end{split}$$

$$+ s^2 b d(x_n, u)$$

$$(1 - s^2b)d(u, Tu) \le s(1+b)d(u, x_{n+1}) + saM_2 + s^2b d(x_n, u)$$
(3.9)

where, $M_2 = \max \{d(x_n, u), d(x_n, x_{n+1})d(u, Tu)\}$, which gives rise to the following two cases for discussion depending on the value of M_2 in this expression:

Case I: If $M_2 = d(x_n, u)$ then from (3.9), we get

$$(1 - s^{2}b)d(u, Tu) \leq s(1 + b)d(u, x_{n+1}) + sa d(x_{n}, u) + s^{2}b d(x_{n}, u)$$

$$= s(1 + b)d(u, x_{n+1}) + (sa + s^{2}b)d(x_{n}, u)$$

$$d(u, Tu) \leq \frac{s(1 + b)}{(1 - s^{2}b)}d(u, x_{n+1}) + \frac{(sa + s^{2}b)}{(1 - s^{2}b)}d(x_{n}, u).$$

On taking the limit as $n \to \infty$, we get d(u, Tu) = 0. Hence u is a fixed point of T in X. Case II: If $M_2 = d(x_n, x_{n+1})d(u, Tu)$ then from (3.8), we get $d(x_n, x_{n+1}) \le k^n d(x_0, x_1)$

$$M_2 = k^n d(x_0, x_1) d(u, Tu) \to 0$$
 as $n \to \infty$ since $k < 1$.

Then from (3.9), we obtain that

$$(1 - s^2 b) d(u, Tu) \le s(1 + b) d(u, x_{n+1}) + s^2 b d(x_n, u)$$

$$\Rightarrow d(u, Tu) \le \frac{s(1 + b)}{(1 - s^2 b)} d(u, x_{n+1}) + \frac{s^2 b}{(1 - s^2 b)} d(x_n, u).$$

Now taking the limit as $n \to \infty$, we get

$$\lim_{n \to \infty} d(u, Tu) = 0.$$

Hence u is a fixed point of T.

Uniqueness of the fixed point: We have to show that u is a unique fixed point of T. Suppose on the contrary that there are two distinct fixed points u and v of T. Then Tu = u and Tv = v and $u \neq v$, thus follows that

$$\begin{split} &d(u,v) \ = \ d(Tu,Tv) \\ &\leqslant a \max\{d(u,v), \frac{d(u,Tu)d(v,Tv)}{1+d(u,v)}, \frac{d(u,Tu)d(v,Tv)}{1+d(Tu,Tv)}\} + b\{d(u,Tv)+d(v,Tu)\} \\ &+ \min\{d(u,Tu), d(u,Tv), d(v,Tu), d(v,Tv)\} \\ &\leqslant a \max\{d(u,v), d(u,u)d(v,v), d(u,u)d(v,v)\} + b\{d(u,v)+d(v,u)\} \\ &+ \min\{d(u,u), d(u,v), d(v,u), d(u,v)\} \\ &\leqslant ad(u,v) + 2bd(u,v) \\ &\Rightarrow d(u,v) \leqslant (a+2b)d(u,v), \end{split}$$

which is a contradiction. Therefore, u = v. Hence u is a unique fixed point of T.

Acknowledgments The authors are thankful to Prof. K.N. Rajeshwari and Prof. A S. Randive for their useful suggestions in the preparation of this paper. The authors also express their gratitude to the referees and to the Editor-in-Chief for suggesting modifications and corrections in the original draft of this paper which have improved the quality of this manuscript.

References

- [1] Agrawal, S., Qureshi, K. and Nema, J. (2016). A fixed point theorems for b-metric space, *International Journal of Pure and Applied Mathematical Sciences*, 9(1), 45–50.
- [2] Aydi, H., Bota M.F., Karasinar, E. and Moradi, S. (2012). A common fixed point for weak ϕ -contractions on b-metric spaces, Fixed Point Theory, 13(1), 337–346.
- [3] Bakhtin, I.A. (1989). The contraction mapping principle in almost metric spaces, Functional Analysis, Unianowsk Gos. Ped. Inst., 30(30), 26–37.
- [4] Banach, S. (1922). Surles operations dans les ensembles abstract et leur application aux equation integrals, Fund. Math., 3(1), 133–181.
- [5] Bota, M., Molnar, V. and Csaba, Varga (2011). On Ekeland variational principle in b-metric spaces, Fixed Point Theory, 12(2), 21–28.
- [6] Boriceanu, M. (2009). Strict fixed point theorems for multivalued operators in b-metric spaces, Inter. J. Mod. Math., 4(2), 285–301.
- [7] Boriceanu, M., Bota, M. and Petrusel, Adrian (2010). Multivalued fractals in b-metric spaces, Cen. Eur. J. Math., 8(2), 367–377.
- [8] Czerwik, S. (1993). Contraction mappings in b-metric spaces, Acta. Math. Inform. Univ. Ostraviensis, 1(1), 5–11.
- [9] Czerwik, S. (1988). Nonlinear set-valued contraction mappings in b-metric spaces, Atti Semi. Mat. Univ. Modena, 46(2), 263–276.

