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1 Introduction

The problem of uniform convergence to any continuous function in Korovkin-type approximation theory
is that operator sequences are generally linear and positive operator sequences. In linear approximation
operators, addition and multiplication, which are algebraic operations in the linear space structure of
real numbers, are used. The basic theorems are Weierstrass type uniform approximation theorems and
the error rate is usually calculated with the help of the continuity module.
Let f be a function defined on [0, 1) . The Favard Szasz-Mirakyan operators Sn applied to f are given
by

Sn(f ;x) = e−nx
∞∑

k=0

f

(
k

n

)
(nx)k

k!
. (1.1)

In 1978, Becker et al. [5] investigated the approximation properties of the operators Sn in the expo-
nential weight space and proved main approximation theorems for these operators. In 2002, Ispir and
Atakut [7] modified the operator Sn as follows:

S∗
n (f ;x) =

∞∑
k=0

pk (anx) f

(
k

bn

)
, x ∈ R0, (1.2)

where
pk (anx) = e−anx (anx)

k

k!
,
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Modified Favard Szasz-Mirakyan operators of max-product type 61

R0 = [0,∞) , {an} and {bn} are sequences of positive numbers, increasing and unbounded such that

lim
n→∞

1

bn
,

an

bn
= 1 + o

(
1

bn

)
.

When an = bn = n in (1.2), we obtain the original Favard Szasz-Mirakyan operators given in (1.1).
It is easily seen that S∗

n (f ;x) is a positive linear operator. Ispir and Atakut [7] and Walczak [10]
studied some approximation properties of these operators in polynomial weighted spaces of continuous
and unbounded functions defined on positive semi-axis. Ispir and Atakut [7] also obtained the order of
approximation and investigated the bivariate case of these operators.
Rempulska and Walczak [8] examined the approximation properties of the following modified Favard
Szasz–Mirakyan operators,

Sn (f ; r;x) = e−nx
∞∑

k=0

(nx)k

k!
f

(
k

n+ r

)
, r > 0, x ∈ R0, (1.3)

for function f ∈ Br, where Br, r > 0, denotes the space of all real-valued functions f defined on R0 for
which νrf is bounded function on R0, n ∈ N (see, Rempulska and Walczak [8]).
Serenbay and Dalmanoğlu [9] defined the following generalized Favard Szasz-Mirakyan operators.

S∗
n (f ; r;x) :=

{ ∑∞
k=0 pk (anx) f

(
k

r+br

)
, x > 0,

f (0) , x = 0,
(1.4)

where
pk (anx) = e−anx (anx)

k

k!
, (1.5)

R0 = [0,∞), {an} and {bn} are given increasing and unbounded sequences of positive numbers satisfying
the conditions

(an) ≤ (bn) , lim
n→∞

1

r + bn
= 0,

an

r + bn
= 1 + o

(
1

r + bn

)
(1.6)

for all n ∈ N. They proved some approximation theorems in the exponential weighted space of functions
by these generalized operators.
Subsequent studies have obtained linear operators as well as nonlinear maximum-product type operators
with the help of the continuity module with less approximation degrees of error. Bede, Coroianu and
Gal,(2016) present a broad overview of developments in the field of constructive approximation involving
maximum-product type operators. They highlight the maximum product operators as those that enable
them to obtain more valuable predictions than those achieved by the conventional approaches in most
cases. In Acar et al. [1], Güngör, and Ispir [6], Bede et al. [2, 3] “max-product kind operators” were
presented by using maximum in the name of sum in usual linear operators and they gave a Jackson-type
error estimate in terms of the modulus of continuity.
In this study, we define the max-product type of the nonlinear modified Favard Szasz-Mirakyan oper-
ators as follows:

S(M)
n (f) (x) =

∨∞
k=0 cn,k (x) f

(
k

n+r

)
∨∞

k=0 cn,k (x)
(1.7)

where cn,k (x) =
(nx)k

k!
.

We give some auxiliary Lemmas in Subsection 2.1 and Subsection 2.2 is devoted to our main results.
We shall prove our approximation theorems in this section.

2 Main Results

2.1 Auxiliary results
Let f : [0,∞) → R+ be a continuous function. We want to give an error upper limit for the operators

S(M)
n (f) : CB+ ([0,∞)) → CB+ ([0,∞)) .
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This upper limit is given by (1.7) in terms of the module of continuity. Now we give some general
information about nonlinear operators of the max-prod type. Over the set R+ of positive reals, we
will deal with two different algebraic operations on R+. These operations are “

∨
” (maximum) and “·”

(product) and then (R+,
∨
, ·) is called a max-product algebra. (see, Güngör and Ispir [6]).

Let I ⊂ R be a bounded or an unbounded interval and CB+ (I), f : I → R+ denote the space of all
continuous and bounded functions and a sequence of approximation operators of maximum product
type Ln : CB+ (I) → CB+ (I) is defined by

Ln (f) (x) :=

n∨
i=0

Kn (x, xi) · f (xi) ,

or, by

Ln (f) (x) :=

∞∨
i=0

Kn (x, xi) · f (xi) ,

where n ∈ N, f ∈ CB+ (I), Kn (·, xi) ∈ CB+ (I) and xi ∈ I, for all i. These operators are nonlinear
positive operators having pseudolinearity property, i.e., for all f, g ∈ CB+ (I) and for any α, β ∈ R+

Ln

(
αf
∨

βg
)
= αLn (f) (x)

∨
βLn (g) (x) .

Moreover, the max-product operators are positive homogenous, that is Ln (λf) = λLn (f) for all λ ≥ 0
(see, Bede et al. [4]). The following auxiliary Lemmas give some properties of the Ln operators.

Lemma 2.1. (Bede et al. [4]) Let I ⊂ R be a bounded or an unbounded interval,

CB+ (I) = {f : I → R+; f is continuous and bounded on I} ,

and Ln : CB+ → CB+, n ∈ N be a sequence of operators satisfying the following properties:

(i) Monotonicity
f, g ∈ CB+ satisfy f ≤ g then Ln (f) ≤ Ln (g) for all n ∈ N;

(ii) Subadditivity
Ln (f + g) ≤ Ln (f) + Ln (g) for all f, g ∈ CB+ (I) .

Then for all f, g ∈ CB+ (I), n ∈ N and x ∈ I we have

|Ln (f) (x)− Ln (g) (x)| ≤ Ln (|f − g|) (x) .

Remark 2.2. (Bede et al. [4])

2.2.1. The max-product for the Favard Szasz-Mirakyan operators defined by (1.7) verify the conditions
(i) and (ii) of Lemma 2.1. In fact, instead of the condition (i) of Lemma 2.1 it satisfies the stronger
condition

Sn

(
f
∨

g
)
(x) = Sn (f) (x)

∨
Sn (g) (x) , f, g ∈ CB+ (I) .

Indeed, by taking in the above equality f ≤ g, f, g ∈ CB+ (I), it easily follows that

Ln (f) (x) ≤ Ln (g) (x) .

2.2.2. Furthermore, the Favard Szasz-Mirakyan operators of the max-product type is positive homoge-
nous, that is, Sn (λf) = λSn (f) for all λ ≥ 0.

Corollary 2.3. (Bede et al. [4]) Let Ln : CB+ → CB+, n ∈ N be a sequence of operators satisfying
the conditions (i) and (ii) of Lemma 2.1 and in addition Ln be a positive homogenous operator. Then
for all f ∈ CB+ (I) , n ∈ N and x ∈ I we have

|f (x)− Ln (f) (x)| ≤
[
1

δ
Ln (φx) (x) + Ln (e0) (x)

]
W1(f ; δ)I + f (x) · |Ln (e0) (x)− 1| ,
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where δ > 0, e0 (t) = 1 for all t ∈ I, φx (t) = |t− x| for all t ∈ I, x ∈ I.

W1(f ; δ)I = max
x, y ∈ I

|x− y| ≤ δ

|f (x)− f (y)|

is the first modulus of continuity. If I is unbounded then we suppose that there exists Ln (φx) (x) ∈
R+ ∪ {+∞} , for any x ∈ I, n ∈ N.

Corollary 2.4. (Bede et al. [4]) Suppose that in addition to the conditions in Corollary 2.3, the
sequence (Ln)n satisfies Ln (e0) = e0, for all n ∈ N. Then for all f ∈ CB+ (I), n ∈ N and x ∈ I we
have

|f (x)− Ln (f) (x)| ≤
[
1 +

1

δ
Ln (φx) (x)

]
W1(f ; δ)I .

Definition 2.5. Let f :[0,∞) → R+ be a continuous function in 0 ≤ x < ∞, r > 0; limn→∞
1

n+r
= 0

the maximum-product type modified Favard Szasz-Mirakyan operators, with an increasing and unlim-
ited series of positive real numbers, are defined as

S(M)
n (f) (x) =

∨∞
k=0 Sn,k (x) f

(
k

n+r

)
∨∞

k=0 Sn,k (x)
(2.1)

where Sn,k (x) =
(nx)k

k!
.

For a continuous and limited function f :[0,∞) → R+,S(M)
n (f) (x)is positive and continuous over the

interval [0,∞). Also S
(M)
n (f) (0)− f (0) = 0 for each n.

Definition 2.6. For each k, j ∈ {0, 1, 2, . . . } and x ∈
[

j
n+r

, j+1
n+r

]

Mk,n,j (x) =
Sn,k (x)

∣∣∣ k
n+r

− x
∣∣∣

Sn,j (x)
, mk,n,j (x) =

Sn,k (x)

Sn,j (x)

where Sn,k (x) =
(nx)k

k!
.

Definition 2.7. For each k, j ∈ {0, 1, 2, . . . } and x ∈
[

j
n+r

, j+1
n+r

]
, if k ≥ j + 1

Mk,n,j (x) =
Sn,k (x)

(
k

n+r
− x
)

Sn,j (x)

and if k ≤ j − 1

Mk,n,j (x) =
Sn,k (x)

(
x− k

n+r

)
Sn,j (x)

where Sn,k (x) =
(nx)k

k!
.

Lemma 2.8. For all x ∈
[

j
n+r

, j+1
n+r

]
and j = 0, 1, . . . , we have,

∞∨
k=0

Sn,k (x) = Sn,j (x)

where, Sn,k (x) =
(nx)k

k!
.

Proof. Firstly, we show that for fixed n ∈ N and 0 ≤ k, we have 0 ≤ Sn,k+1 (x) ≤ Sn,k (x) if and only
if x ∈

[
0, k+1

n+r

]
.

 Bulletin of Pure and Applied Sciences Section E - Mathematics & Statistics, Vol. 40 E, No. 1, January-June, 2021



64 Fahri Baruğ and Sevilay Kirci Serenbay

Indeed, writing the the above inequality explicitly, we have

0 ≤ (nx)k+1

(k + 1)!
≤ (nx)k

k!
.

If x = 0, this inequality is true. For x > 0, after simplifications it becomes

0 ≤ nx

(k + 1)
≤ 1

then
0 ≤ x ≤ k + 1

n+ r
<

k + 1

n
.

By taking k = 0, 1, 2, . . . in the inequality just proved above, we get

Sn,1 (x) ≤ Sn,0 (x) ⇒ x ∈
[
0,

1

n+ r

]
,

Sn,2 (x) ≤ Sn,1 (x) ⇒ x ∈
[
0,

2

n+ r

]
,

Sn,3 (x) ≤ Sn,2 (x) ⇒ x ∈
[
0,

3

n+ r

]
,

so,
Sn,k+1 (x) ≤ Sn,k (x) ⇒ x ∈

[
0,

k + 1

n+ r

]
.

From the above inequalities, we obtain that

if x ∈
[
0,

1

n+ r

]
, then Sn,k(x) ≤ Sn,0(x) for all k = 0, 1, 2, ...,

if x ∈
[

1

n+ r
,

2

n+ r

]
, then Sn,k(x) ≤ Sn,1(x) for all k = 0, 1, 2, ...,

if x ∈
[

2

n+ r
,

3

n+ r

]
, then Sn,k(x) ≤ Sn,2(x) for all k = 0, 1, 2, ...,

and so on, in general,

if x ∈
[

j

n+ r
,
j + 1

n+ r

]
, then Sn,k(x) ≤ Sn,j(x) for all k = 0, 1, 2, ...,

which proves the lemma.

Lemma 2.9. For each k, j ∈ {0, 1, 2, . . . } and x ∈
[

j
n+r

, j+1
n+r

]
, we have

mk,n,j (x) ≤ 1.

Proof. There are two situations: either k ≥ j or k ≤ j.

Case I Let k ≥ j. Since the function t (x) = 1
x

and as the function is nonincreasing on
[

j
n+r

, j+1
n+r

]
it

follows that
mk,n,j (x)

mk+1,n,j (x)
=

(k + 1) (n+ r)

n
.
1

x
≥ k + 1

n+ r
.
n+ r

j + 1
=

k + 1

j + 1
≥ 1

which implies that
mj,n,j (x) ≥ mj+1,n,j (x) ≥ mj+2,n,j (x) ≥ . . . .

Case II Let k ≤ j. Since the function k (x) = x and since the function is nondecreasing on
[

j
n+r

, j+1
n+r

]
it follows that

mk,n,j (x)

mk−1,n,j (x)
=

n

(n+ r) k
.x ≥ n

(n+ r) k
.
j. (n+ r)

n
≥ 1

which implies that
mj,n,j (x) ≥ mj−1,n,j (x) ≥ mj−2,n,j (x) ≥ . . . ≥ m0,n,j (x) .

Since mj,n,j (x) = 1, the proof of the lemma is complete.
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Lemma 2.10. Let x ∈
[

j
n+r

, j+1
n+r

]
. In this case

(i) if k ∈ {j + 1, j + 2, . . .} such that k −
√
k + 1 ≥ j then

Mk,n,j (x) ≥ Mk+1,n,j (x) .

(ii) if k ∈ {1, 2, . . . , j − 1} such that k +
√
k ≤ j then

Mk,n,j (x) ≥ Mk−1,n,j (x) .

Proof. Firstly
Mk,n,j (x)

Mk+1,n,j (x)
=

(n+ r) (k + 1)

n
.
1

x
.

k
n+r

− x
k+1
n+r

− x

since the function θn,k (x) =
1
x
.

k
n+r

−x

k+1
n+r

−x
is decreasing, for all x ∈

[
j

n+r
, j+1
n+r

]
therefore,

θn,k (x) ≥ θn,k

(
j + 1

n+ r

)
=

n

(n+ r) (j + 1)
.
k − j − 1

k − j
.

Since the condition k −
√
k + 1 ≥ j in the hypothesis is

(k + 1) . (k − j − 1) ≥ (j + 1) (k − j)

we obtain
Mk,n,j (x)

Mk+1,n,j (x)
≥ (n+ r) (k + 1)

n

n

(j + 1) (n+ r)
.
k − j − 1

k − j
≥ 1.

Similarly,
Mk,n,j (x)

Mk−1,n,j (x)
=

n

k (n+ r)
.x.

x− k
n+r

x− k+1
n+r

.

Since the function φn,k (x) = x.
x− k

n+r

x− k+1
n+r

is increasing, for all x ∈
[

j
n+r

, j+1
n+r

]
,

φn,k (x) ≥ φn,k

(
j

n+ r

)
=

j (n+ r)

n
.

j − k

j − k + 1
.

Then, since the condition k +
√
k ≤ j, we get

Mk,n,j (x)

Mk−1,n,j (x)
≥ n

k (n+ r)
.
j (n+ r)

n
.

j − k

j − k + 1
≥ 1,

which proves the lemma.

2.2 Approximation theorem
For estimating the degree of approximation of a function f ∈ CB+(I) we use the Shisha–Mond Theorem
given for nonlinear max-product type operators in Bede et al. [2].

Theorem 2.11. If f : [0,∞) → R+
0 be a uniform, continuous and bounded function and S

(M)
n (f) (x) be

the modified Favard Szasz-Mirakyan operator of the max-product type defined in (2.1), then the following
pointwise estimate holds.∣∣∣S(M)

n (f) (x)− (f) (x)
∣∣∣ ≤ 8W1

(
f :

√
x

n+ r

)
, ∀n ∈ N, x ∈ [0,∞),

where,
W1 (f : δ) = sup {|f (x)− f (y)| : x, y ∈ [0,∞) , |x− y| ≤ δ} .
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Proof. Since S
(M)
n (e0) (x) = 1 and using the modified Favard Szasz-Mirakyan Theorem, we have∣∣∣S(M)

n (f) (x)− (f) (x)
∣∣∣ ≤ (1 + 1

δn
δ(M)
n φx (x)

)
W1 (f, δn) (2.2)

where (φx) (t) = |t− x| . Hence, it is sufficient to estimate the following term

En (x) := S(M)
n (φx) (x) =

∨∞
k=0

(nx)k

k!

∣∣∣ k
n+r

− x
∣∣∣∨∞

k=0
(nx)k

k!

, x ∈ [0,∞).

Let x ∈
[

j
n+r

, j+1
n+r

]
and j ∈ {0, 1, 2, . . .} be arbitrarily fixed. We get

En (x) = max
k=0,1,...

{
Mk,n,j (x) , x ∈

[
j

n+ r
,
j + 1

n+ r

]}
.

Here j = 0 implies,

Mk,n,0 (x) =
(nx)k

k!

∣∣∣∣ k

n+ r
− x

∣∣∣∣ , k ≥ 0.

If k = 0, then we have
M0,n,0 (x) = x =

√
x
√
x ≤

√
x.

1√
n
,

where so if

Mk,n,0 (x) ≤
(nx)k

k!
.

k

n+ r
=

nk.
√
x.xk− 1

2

(k − 1)! (n+ r)
.

If x ∈
[

j
n+r

, j+1
n+r

]
then

xk− 1
2 <

(
j + 1

n+ r

)k− 1
2

where j = 0 so if

xk− 1
2 <

(
1

n+ r

)k− 1
2

then

Mk,n,0 (x) ≤
√
x

(
n

n+ r

)k− 1
2

.
1

(k + 1)!
.

1√
n+ r

,

or,

Mk,n,0 (x) ≤
√
x√

n+ r
≤

√
x√
r
,

so, x ∈
[

j
n+r

, j+1
n+r

]
for Mk,n,j (x) ≤ 4

√
x√
n

where k = 0, 1, 2, . . . .

We shall show that En (x) ≤ 4
√
x√
n

and δn = 4
√
x√
n

for every x ∈ [0,∞) , n ∈ N. We shall prove this for
the following three cases:
viz., Case 1: when k = j, Case 2: when k ≥ j + 1 and Case 3: when k ≤ j − 1.

Case 1: If k = j, then Mj,n,j (x) =
∣∣∣ j
n+r

− x
∣∣∣. Since x ∈

[
j

n+r
, j+1
n+r

]
then Mj,n,j (x) ≤ 1

n+r
.

Since j ≥ 1 and x ≥ 1
n+r

, thus 1
n+r

= 1√
n+r

. 1√
n+r

≤
√

x√
n+r

.

Case 2a: Let k −
√
k + 1 < j, then

Mk,n,j (x) = mk,n,j (x)

(
k

n+ r
− x

)
≤ k

n+ r
− x ≤ k

n+ r
− j

n+ r

≤ k

n+ r
− k −

√
k + 1

n+ r
=

√
k + 1

n+ r
.
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But we have k ≤ 3j. When k > 3j we have a contradiction. Since the function g (x) = x−
√
x+ 1

is non-decreasing, it can be written that

j > k −
√
k + 1 ≥ 3j −

√
3j + 1,

which gives the contradiction j > 3j −
√
3j + 1, consequently,

Mk,n,j (x) ≤
√
k + 1

n+ r
≤

√
3j + 1

n+ r
≤ 2

√
j

n+ r
≤ 2

√
x

n+ r

is obtained because
√
x ≥

√
j√

n+r
.

Case 2b: Let k −
√
k + 1 ≥ j. Since the function g (x) = x −

√
x+ 1 does not decrease on [0,∞), it

has a maximum value of k ∈ {0, 1, 2, . . . } such that k −
√

k + 1 < j.
In this case, k1 −

√
k1 + 1 ≥ j and

Mk+1,n,j (x) = mk+1,n,j (x)

((
k + 1

)
n+ r

− x

)
≤ k + 1

n+ r
− x

≤ k + 1

n+ r
− j

n+ r
≤ k + 1

n+ r
− k −

√
k + 1

n+ r

=

√
k + 1 + 1

n+ r
≤ 3

√
x√

n+ r
≤ 3

√
x√
n

is found for k1 = k + 1.
Where k−

√
k + 1 < j, it requires that k < 3j, the final inequality is obtained. In addition, since

the function g is non-decreasing, k1 ≥ j + 1 and g (j) < j, we get

Mk+1,n,j (x) ≥ Mk+2,n,j (x) ≥ . . .

so Mk,n,j (x) ≤ 3
√

x√
n+r

for all k ∈
{
k + 1, k + 2, . . .

}
. Then Mk,n,j (x) ≤ 3

√
x

n+r
is obtained from

these two sub-cases.
Case 3a: Let k +

√
k ≥ j. We have,

Mk,n,j (x) = mk,n,j (x)

(
x− k

n+ r

)
≤ j + 1

n+ r
− k

n+ r

≤ k +
√
k + 1

n+ r
− k

n+ r
=

√
k + 1

n+ r

≤
√
j − 2 + 1

n+ r
=

1√
n+ r

.

√
j − 2 + 1√
n+ r

≤ 2
√
x√

n+ r
≤ 2

√
x√
n

where √
j − 2 + 1√
n+ r

≤ 2
√
j√

n+ r
≤ 2

√
x.

Case 3b: Let k +
√
k ≤ j. Let k ∈ {0, 1, 2, . . . }, be the minimum value such that k +

√
k > j. In this

case k2 = k − 1 satisfies the inequality k2 +
√
k2 ≤ j and we get

Mk−1,n,j (x) = mk−1,n,j (x)

(
x− k − 1

n+ r

)
≤ j + 1

n+ r
− k − 1

n+ r

≤ k +
√

k + 1

n+ r
− k − 1

n+ r
=

√
k + 2

n+ r

≤ 4
√
x√

n+ r
≤ 4

√
x√
n
,

 Bulletin of Pure and Applied Sciences Section E - Mathematics & Statistics, Vol. 40 E, No. 1, January-June, 2021



68 Fahri Baruğ and Sevilay Kirci Serenbay

which on using with
k − 1 = k2 ≤ k2 +

√
k2 ≤ j

for the final inequality, we obtain the expressions k ≤ j + 1 and
√

k + 2 ≤
√
j + 1 + 2 ≤ 4

√
j.

Also in this case, since j ≥ 1, k2 ≤ j − 2, we get

Mk−1,n,j (x) ≥ Mk−2,n,j (x) ≥ · · · ≥ M0,n,j (x) .

We thus obtain Mk,n,j (x) ≤ 4
√

x
n+r

for any k ≤ j− 1 and x ∈
[

j
n+r

, j+1
n+r

]
. Then Mk,n,j (x) ≤ 4

√
x

n+r

is obtained from these two sub-cases. Of all the values obtained above Mk,n,j (x) ≤ 4
√

x
n+r

for every

x ∈
[

j
n+r

, j+1
n+r

]
. En (x) ≤ 4

√
x

n+r
gives every x ∈

[
j

n+r
, j+1
n+r

]
, n ∈ N, δn = 4

√
x

n+r
.

Collecting all the above estimates we get∣∣∣S(M)
n (f) (x)− (f) (x)

∣∣∣ ≤ 8W1

(
f :

√
x

n+ r

)
, ∀n ∈ N, x ∈ [0,∞) ,

which completes the proof.

3 Conclusion

In this paper as the most important result, by defining the nonlinear modified Favard Szasz-Mirakyan
operator, a more valuable error rate is calculated with the help of the continuity module and the
approximation degree is also calculated.
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Appendix: Abbreviations of symbols used
N The set of Natural numbers.
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R The set of real numbers.
R+

0 The set of nonnegative real numbers.∨
The max operation.

Sn (f ;x) The linear Favard Szasz-Mirakyan operator.
W (f ; δ) The continuity modulus of function f .
S

(M)
n (f) (x) The maximum-product type modified Favard Szasz-Mirakyan operator.
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