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1 Introduction

Let D = {z € C: |z| < 1} be the open unit disk in the complex plane C and H(ID) denote the class of
all analytic functions in D. Let ¢ be a complex-valued function in the plane.The superposition operator
Sy is defined as follows (see [2]):

Definition 1.1. Let X and Y be two metric spaces of H(D) and ¢ denote a complex-valued function
in the plane C such that ¢ o f € Y whenever f € X, we say that ¢ acts by superposition from X into
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Y and the superposition operator S, on X is defined by

Se(f) = (dof), fex. (1.1)

Observe that if X contains the linear functions and Sy maps X into Y, then Sy must be an entire
function.

The problem of boundedness and compactness of Sg has been studied in many Banach spaces of analytic
functions and the study of such operators has recently attracted the attention of many researchers (see,
for instance, [1,5,12,13]).

Now, we introduce the definition of the products of superposition operator followed by differentiation
operator as follows:

Definition 1.2. The differentiation operator D is defined by Df = f’, while the operator DSy is
defined by DS4(f) = (¢ o f)'.

The Bloch type space is defined as follows (see [10,13]):
Definition 1.3. An analytic function f is said to belong to the Bloch space B if

B(f) = sup 1L~ =717/ (2)| < ox. (1.2
The expression B(f) defines a seminorm on B as follows

£ lls = 1£(O)] + B(f).

Let By denote the subspace of B consisting of those f € B such that
Tim (1= o)1 ()] =0,

this space is called the little Bloch space.

The Hardy space can be defined as follows (see [14]):

Definition 1.4. The space H* denotes the space of all bounded analytic functions f on the unit disk
D such that

[ £llec = sup|f(2)] < oc. (1.3)
z€D

It is well known that with the norm (1.3) the space H is a Banach space. It is easy to see that the
space H® is contained in B and

1115 = sup (1 = [2[)IIf ()] < If]]oo-
z€D

Definition 1.5. Let Z denote the space of all f € (H(D)) N (C(D)) such that

[f(e ") + f(e7") — 2f(e”)]

1£lz = sup < oo,
z€D h

where the supremum is taken over all ¢ € 9D which denotes the boundary of D and h > 0. By the
Zygmund theorem and the closed-graph theorem (see [4, Theorem 5.3] ), we see that f € Z if and only
if

sup (1 — |21 (2)] < oo

z€D

Moreover, the following asymptotic relation holds:

1£1lz = sup (1 — |*)[1 /" (2)] < o0, (1.4)
z€D
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Product of superposition and differentiation operators ... 195

therefore, Z is called the Zygmund class. Since the quantities in (1.4) are semi norms, it is natural to
add to them the quantity |f(0)| + |f'(0)| to obtain two equivalent norms on the Zygmund class.The
Zygmund class with such a defined norm is called the Zygmund space. This norm is also denoted by
|| . l|z. Some information on Zygmund type spaces on the unit disk and some operators on them can
be found in ( see [3,7-9]). The little Zygmund space Zy was introduced by Li and Stevié in (see [6]) in
the following natural way:

f €20 lm (1= |z)If"(2)] = 0.

It is easy to see that Z is a closed subspace of Z and the set of all polynomials is dense in Zj.
Now, we introduce the definition of boundedness and compactness of the operator DSy : H* — Z.

Definition 1.6. The operator DSy : H> — Z is said to be bounded, if there is a positive constant C
such that ||[DSsf||z < C||f||e for all f € H™.

Definition 1.7. The operator DSy : H> — Z is said to be compact, if it maps any function in the
unit disk in H°° onto a pre-compact set in Z.

In this paper we consider the product of the superposition operator followed by the differentiation
operator DSy (f). Throughout the paper we denote by the letter C, a positive constant, which may
vary at each occurrence but it is independent of the essential variables. The notation a < b means that
there is a positive constant C' such that a < Cb. Also, the notation a < b means that a < band b < a
hold.

2 The boundedness of DSy : H*® — Z

In this section we characterize the operator DSy : H* — Z. Moreover, we give the conditions which
prove the boundedness of the operator DSy. So, we list up the following two lemmas which are needed
to prove our main results.

Lemma 2.1. (see( [10])) Assume that f € H*. Then for each n € N, there is a positive constant C
independent of f such that

sup (1= [ 2 )" | F™(2) [ < £ lloo -
z€D
The following lemma is introduced in (see [15]).

Lemma 2.2. Assume that f € B. Then for each n € N,
n—1
£l 3 1 £+ sup (1= 2 )7 | £7(2) |
3=0 *

Now we introduce the main results of boundedness.

Theorem 2.3. Let ¢ be an entire function. Then the following statements are equivalent:
(a)DS4 : H*® — Z is bounded;

(b)DSy4 : B — Z is bounded;

(e)DSy : Bo — Z is bounded;

(d) The following conditions are satisfied.

EXCIONN
Sz < @1)
EXCON P
S Az e < 22)
and
sup 7' ¢ (f(2)) | < 0. (2.3)

zep (1= 12%)?

nnnnnnnnnnn
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Proof. (b) = (a) and (b) = (c) are obvious. Now, we will prove that (d) = (a) and (d) = (b). Firstly
we show that (d) = (a). Let us assume that the conditions (2.1),(2.2) and (2.3) hold. Then, for z € D
and f € H*(or B), by using Lemma 2.1 and Lemma 2.2, we obtain

I DSafllz = supl (1= | 2 )(DSsf)"(2) |

= s (=2 @ G @ +6 (S () |

= swp(1- [z ¢ (PN PR +38 (FNF ) () +¢ (f2)f (2) ]

< akwwﬂgﬁé%wfw+%%%%wﬂ|ﬁ—¥%§Mfw
¢ (f(2) 2, 3¢ (f(2) (f(2))
< of YD g+ SV LUCD ] ),
< cuwzﬁk%%g%nfm f%%%%nﬂu {3%%4uﬂu
¢ (f(2) 2 L 30 (f(2) ¢ (f(2)
< o i Z I e B e )
On the other hand, we have
| (DSef)(0)| = |6 (£(0))f (0) ]
< CH(fO) || flls
< CH(F(0) || £ llsos
and
| (DSsf) (0) | :|JU@KM%> ¢ (£(0))1"(0) |
< Clo"(fO) | £ s +6 (O] || £ Il
< Clo (FO) || £ lloo +6 (SO f lloo -

From the fact |¢(f(0))| < 1, by using the conditions (2.1), (2.2) and (2.3) it follows that the operator
DS, : H*(or, B) — Z is bounded.

Now, we prove that (a) = (d). Assume that DSy : H> — Z is bounded, this means that there exists
a constant C' such that

| DSsf llz <C IS lloos (25)
for all f € H*. From the above inequality, by taking the function f(z) = z ,we have
sup(1- 2 [)¢~ (f(2)) < C. (2.6)

From the fact that|| ¢ | < 1, by using (2.6) and by taking the function f(z) = 2%, we have that

supd(1— |z )26 (f(2)2° +3¢ (f(2))7]

z€D

< C+Csup(1— |z )¢ (f(2)z]

zeD

< C. (2.7)

Similarly, from the fact that || ¢ || < 1, by taking the function f(z) = z*, and by using (2.6), (2.7) we
have that

sup (1— | 2 [1)[27¢" (f(2))2° + 549" (f(2))2" + 66 (f(2))] < C. (2.8)

z€D

*
*MEBPAS
& rusucamions
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For a fixed w € D, we consider the following test functions

1 2\3
(—|wpP) (=|wp? 301wl

fulz) = H—— -2 1—m2)p (2.9)
By the triangle inequality, we have
1 243
= w]?) | == ]wP? 301w’
R I (= e S
1 2\3
(- w) |a=|w? 30 TwD
= 1wl (1= [w])? (1 = fwl)?
< %6
- 3
So, it is clear that for all f,, € H*,
sup [ fu < - (2:10)
Then
Coy A lw ) 20w P - fw )
Fol)=Ca—gr ~ “a-wep T a—wai ) (2.11)
oy 20 [wP) 60w P)? a0 w ),
ful@) = G (1 —wz)* T—wmp )"
oy 60w ) 240w ) 200w )’ o,
Fo (2) = ( (1 —wz)4 (1 —wz)® (1 —wz)s o
and , .
Fu(w) =0, [ (w) =0,
and -
P = =Ty
Thus for w € D, we have
BUDssll > 1IDSefu 2
> (1-|w| >|¢ (F ) (o) (W) + 3¢ (F(w)) fu(w) fon (w)
+ ¢ (fu(w) o (>|
|26 )T
> 0= 1w Py
20 (f (w))@*
= ‘<1f|w|2>2 | (212)
For 6 € (0,1), by using (2.12) and (2.8) we have
¢ (f(w)) o | P W) o | P W)
[ B e ey A R A R e
1 9w L
= w e epe Ta e g 10 V)]
< C. (2.13)

0«‘ AS

= PUBLICATIONS
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It follows that, the condition (2.3) holds, as desired.

Next, we prove the condition (2.2). To see this, for a fixed w € D, put

9w (2)
Now, it is easy to prove that for g, € H*

sup || guw ||eo< 24.
web

_ 20— w ) 30— |wl?)?  (-]w )
T T i—we (—we | (—wep

Then
co 2w B 61w )? 31w [?)?
9u(2) = (e T (1w (1 —w2)
and
oy mAA-w ) 18- [w ) 1200w P
9u(2) = (g T A wa (1 —wz)
w121 [w ) 7201w ) 60(1— | w [?)?
9w (2) = (=1 —pyt (1 —w2)p (1 —w2)°
Now, _
gu(w) = m7
" 2 w2
)= T
and »
Gu (w) = 0.
Thus for w € D, we have
24| DSy ||
> || DSsgu ||z
> (1= w6 (9(w))(9u)*(w) + 3¢ (9(w))gu (w)
+ ¢ (gu(w)gu (w) |
BN
2|69 (g(w))@®
* Ol D Ty
¢ (g(w)@®| |69 (g9(w))w®
= ’(HwP)Q *‘ (1= | w )2
For 6 € (0,1), by using (2.16) and (2.7) we have
¢ (gw) |, .| ¢ (f(w)
SR Twe | T IR w )
s |8 ) || 6 (g(w)
A G e el R Yy e
¢ (g(w)) ¢ (g(w))
o a e T g s e )
1] ¢ (gw)? . y
= 5 s | (1w [2)2 T a—ey \;Ezsw (s(2)) |
| @ o) w "
< C.

* “
‘%ﬁ:ﬁ AS
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(2.14)

(2.15)

(2.16)

(2.17)
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It follows that we get the condition (2.2), as desired.
Now, we will prove the condition (2.1), for w € D, put
1201— |wl?) 81— |wl*)?  20—|w[*)?

e e s L G R (2.18)

So, it is clear that for all h,, € H* and

sup || hw o< 72.

Then
ha(2) = (12((11: ‘E;U)l ) _ 168__%)‘3) + 6((11__|;”Z|)4) ), (2.19)
wos o 240=w P) 48— |w[?)? | 24(0—|w [*)® o
e =y ~ mwt T mwes
moo o 2(1=w ?) 0 192(1— | w [2)? | 120(1— | w [?)® 3
ho G) = SRy ~ T Cwar T —wep
and oW
By (w) = ﬁ o (w) = 0, and h, (w) =
Thus for w € D, we have
72| DSy || > || DSphw |z
> (1= |w ) ¢ (h(w))(hy)* (w) + 3¢ (h(w))he (w)hy (w)
+ ¢ (hu(w)hy (w) |
iy 89 (h(w)w?
> (I=]w[)| TSTIBE |
8¢ (h(w)w®

From (2.6) and (2.20), which is similar to (2.13), we get the condition (2.1).

(¢) = (d). For w,z € D and by using (2.11), (2.15) and (2.19), we have

/ Ch
< -
o) 1S =
’ Cs
19002 1< =7
and o
h;uz < 3 ,
[ hal) 1< T

where C,C2 and Cs are constants, since our test functions fu(w), gw(w) and h., (w) also belong to
the little Bloch space Bo. Similarly we can prove that (a) = (d), thus finishing the proof of Theorem
2.3. O

Theorem 2.4. Let ¢ be an entire function. Then DSy : By — Zy is bounded if and only if DSy :
Bo — Z is bounded and

lim (1- |z (1 ¢ (J) |+ 18" (F) [ +]6 () ) =0. (2.21)

|z|—1

*
*WEECAS
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Proof. Firstly, we assume that DSy : By — Zo is bounded, then DSy : By — Z is bounded. If
we take the functions given by f(z) = z, f(z) = 2% and f(z) = 2°, then from the boundedness of
DS, : By — 2o, we see that the condition of (2.21) follows.

Secondly, we assume that DSy : Bo — Z is bounded and (2.21) holds. Since for each polynomial p we
can obtain that

(1— |z ) (DSsp)" (2) |

|
=1z 6 =)@ ) =) +3¢ )P ()P (2)+¢ (p=)p |

A= 1206 @) 1 ) e +316 ) D Nlosll D lloo)

A= 12)(1 ¢ EE) P leo)- (2.22)

Hence, for each polynomial p, DSgp € Z¢ and by using the condition (2.21) we see that the set of all
polynomials is dense in Bo, thus for every f € Bo, there is a sequence of polynomials {px} such that
lpe — fllzg — 0 as k — occ.

In view of Theorem 2.3, the operator DSy : B — Z is bounded, so we have

IN

+

| DSopr. = DSy f |z<|| DS || - [| P = f lls = 0 as k — oo.

Hence DS4(Boy) C Zo, since Zy is a closed subset of Z. That ends the proof of Theorem 2.4. O

3 The compactness of DSy : H*® — Z

In this section, we characterize the compactness of the operator DSy : H* — Z. Moreover, we give
the conditions which prove the compactness of the operator DSy. For this purpose we list the following
two lemmas which are needed to prove our main results:

Lemma 3.1. Let ¢ be an entire function. Let X = H*, B or By. Then DSy : X — Z is compact if
and only if DS4 : X — Z is bounded and for any bounded sequence {fn} in X which converges to zero
uniformly on compact subsets of D as n — oo, we have || DSgfn ||z— 0 as n — co.

The following second lemma was introduced and proved in [6] which is similar to the corresponding
lemma in [11].

Lemma 3.2. A closed set Kin Zy is compact if and only if K is bounded and satisfies

lim sup(l— |z |2) \ f”(z) |= 0.
eK

lz|—1 ¢
Now, we begin with the necessary and sufficient conditions for the compactness of DSy : H> — Z.

Theorem 3.3. Let ¢ be an entire function. Then the following statements are equivalent:
(a)DSy : H*® — Z is compact;

(b)DSy : B — Z is compact;

(¢)DSg¢ : Bo — Z is compact;

(d)DSy : B — Z is bounded and

L7 () | _
l6(x)—>1 (1= 2 ]2)2 0, (3.1)
L") _
lo(z)—1 (1= ] 2 [2)2 0, (3.2)
and
SUE)] -

le(z)—>1 (1= | 2 |2)2
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Proof. Since By C B, the implication (b) = (c) is obvious. Now, we will prove that (d) = (a) and
(d) = (b). Firstly we prove that (d) = (a). For any bounded sequence {f,} in H* (or B) with f, — 0
uniformly on compact subsets of D, by using Lemma 3.1, it is enough to prove that

| DS¢frn ||z— 0asn — oco.

Suppose || fn [loo< 1 (o1, || fn [|l58< 1). From (3.1), (3.2) and (3.3), given € > 0, there exists a § € (0,1),
when § < |¢(z)| < 1, we have

0"(1) |, R, dUE)
A= l=P3 T =]z pp -]z )

By the boundedness of DSy : H*® — Z and Theorem 2.3, we see that (2.1), (2.2) and (2.3) are satisfied.
Since f, — 0 uniformly on the compact subsets of D, the Cauchy’s estimate gives that f;“ f;: and fnl '
converge to 0 uniformly on the compact subsets of . Hence there is an Ny € N such that for n > No

16 (FO)L)O) |+ [ 6 (FO)(£2)*0) [ + | ¢ (£(0))(fr)(0) |

(1—| z |*)( + ) <e (3.4)

’

+ @ggrwsz¢”uwnum(@+3&kﬂ@va@ﬂuo+awu»ﬁw

< Ce (3:5)
From (3.4) and (3.5) we have
| DSy fn llz /
\w&nmm+|w&nwmwgguﬂzm|w%nYM|

IA

16 (FO)L)O) | + [ (FO)F)2O0) [+ ¢ (£0))(f)(0) |
+ ﬁgu—|ﬂ%|a%ﬂaxﬂfuy+wfwwnﬁwnﬁ@y+dwwnﬂ%@|

16 (FO)L)O) |+ (FO)(F2)20) [+ 16 (F0))(£)(0) |

+ osup (1= [ 2 ) 16 (PN (2) +38 (F(2)) ful2) fn (2) + 6 (F(2))fn (2) |

[z]<é

IN

IN

+ 55E&IU—WZI5\¢”Kf@D(ﬂJ%Z)+3$Yf&ﬁni&)ﬂXZ)+¢Yf@»ff(d|
wn (1— |2 Py L U@ - 8" () (k)
S CexC s A== T s T 2P T a2 P
< 2Ce. (3.6)

when n > No. It follows that the operators DSy : H* (or, B) — Z is compact. Now, we shall prove
the second direction that (a) = (d). We assume that DSy : H* — Z is compact. Then it is clear that
DSy : H® — Z is bounded. Let {zx} be a sequence in D such that |¢(zx)| — 1 as k — oo. If such a
sequence does not exist then (3.1) - (3.3) automatically hold. We use the following test functions

fomy = ULz P) =l 50 = ) (3.7)

1—Zkz (1 —Zx2)? (1 —2zx2)3

It is easy to prove that

26
sup | fi < 3
z€D
Jr(zr) =0,
Jr (21) =0,
and "'(z B 273
S PADE
‘L
*WEELAS
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It is clear that f converges to 0 uniformly on the compact subsets of D, using (2.13) and the compact-
ness of DSy : H™ — Z we get

20 (f ()7

G T
= (A= z Do (FE)(fr)?(zr) +30 (f(z1)) fr(z) fr (z) + & (f(z)) fi
< || DSsfllz—0 as k — oo. (3.8)

From this and |¢(z)| — 1, it follows that

thus, we get (3.3).
In order to prove (3.2), we use the following test functions

20— |z ) | 30— [z [)? (A== *)°
1—Zgpz (1 —252)? (1 —7252)3

gr(2) = —

It is easy to prove that
sup || gk [leo< 24,
zeD

PN

and
gr (2k) = 0.
Since g converges to 0 uniformly on compact subsets of I, the compactness of DSy : H> — Z implies

that
lim H DS¢gk ||Z: 0.
k—oo

From (2.16) we obtain

"

¢ (f(zk)7°
(1= ]2 [?)?

(=12 P) | 0= )| B < 0 DSy 2 0

as k — oo.
Thus,

Loty
)

li
el (1— EN

. “(g(z))
JL”;(P\ZH) =0

So, (3.2) holds. Finally we take the following test function
120 a P 80— =k ) 20— |z [P)°

haz) = 1—zrz (1 —z2)? + (1 —zr2)3 (3.10)

It is clear that
sup | o [l 72,

z€D
where,
’ 2 Zk
) = 1o | 2 |27
hk (Zk) = 0,
0«‘ AS
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Product of superposition and differentiation operators ... 203

hk (Zk) = 0,
and hy converges to 0 uniformly on the compact subsets of D, the compactness of DSy : H® — Z
implies that
lim || DS¢hk ||Z: 0.
k—oo

From this and (2.20) we obtain (3.1), the implication thus follows.

(c) = (d). Since our test functions fx(2), gx(z) and hx(z) also belong to the little Bloch space, following
a similar way as in the proof of (a) = (d), we can obtain the desired result. This concludes the proof
of this theorem. O

Next we prove the following theorem:

Theorem 3.4. Let ¢ be an entire function. Then the following statements are equivalent:
(a)DSy : H*® — Z is compact;

(b)DSy : B — Zo is compact;

(¢)DSg4 : Bo — 2o is compact;

(d) The following conditions are satis fied

" ()| _
lo()l>1 (1= 2 ]2)2 0, (3.11)
8 () | _
lo(z)—1 (1— | 2 ]2)2 0, (3.12)
and
[0 D _ g s

le(z)—>1 (1= | 2 |2)2

Proof. The proof of (b) = (c) is obvious. Now, we prove that (d) = (a) and (b). By taking the supre-
mum in inequality (2.4) over all f € H*(or, f € B) such that || f ||cc< 1 ( correspondingly, || f ||5< 1),
and letting |z| — 1, yields

lim sup (1-|z ") [ (DSsf) (2) |=0,
12121 o <1
or,
lim sup (1— [z [*)[(DSsf) (2) |=0.
lzl= 1 s <1
Therefore, by Lemma 3.2, we see that the operator DSy : H* (or, B) — Z is compact.
(a) or (¢) = (d). Now we assume that DSy : H* (or, By) — Zo is compact. Thus, DS, : H*(or, By) —
Zy is bounded, and by choosing the function f(z) = z, it follows that

"

lim (1— | = [*) | (6(£())" |=0. (3.14)

|z|—1

By choosing the function f(z) = 2%, we get

lim (1 | 2 [*) | 2(6(f(2))) 2° +3(8(f(2))) = |= 0. (3.15)

|z|—=1

From (3.14), (3.15) and the fact that || ¢ [|co< 1, we get

"

lim (1— | %) | (6(£(2))" = 0. (3.16)

|z|—1
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By choosing the function f(z) = 2%, we have

Jim (1= ]2 ) | 27(6(£(2))" 2 + 18(8(/(2))"2" + () |= 0. (3.17)

From (3.14), (3.16), (3.17) and the fact that || ¢ ||oo< 1, we get

lim (1| 2 [°) | (6(f(2)))" |=0. (3.18)

|z|—1

By (2.12), (2.16), (2.20) and DSy fuw, DS4gw, DSshw € Zo we know that

1 (@)
\qﬁ(lzlﬂl—ﬂ 0=z p)? =0, (3.19)

6" (fG) | _
b1 (1= |z [2)2 0, (3.20)

and
19U _
lo(2)[=1 (1= | z [2)2 0 (3.21)

We have thus proved that (3.14) and (3.19) imply (3.11). The proofs of (3.12) and (3.13) follow by
the same procedure, thus we omit them. From (3.19), it follows that for every € > 0, there exists a
0 € (0,1) such that

| (bm(f(z)) |
3.22

(1_ | z |2)2 =6 ( )

when § < |z| < 1. Using (3.14) we see that there exists a 7 € (0, 1) such that

"

|6 (f(2) | <e(1—06%), (3.23)

when 7 <] z |< 1.
Then, when 7 <| z |[< 1 and § < |z| < 1 by (3.22) we get

6" (£(2) |
e . .24
i f=pp ¢ 42
On the other side, when 7 <| z |< 1 and |2] < ¢ by (3.23) we get

16" () | _ 16" ()]
(== P2 = (1-8)

<e. (3.25)

4 Conclusion

In this paper we characterized the boundedness and the compactness of the new product operator DSy,
the so-called product of the superposition operator followed by the differentiation operator from H°°
to Zygmund space. Moreover, we proved that the properties of boundedness and compactness still hold
for this operator from H® to Zygmund spaces and we gave the conditions which guarantee that the
product operator DSy is bounded and compact.
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