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1 Introduction

Let D = {z ∈ C : |z| < 1} be the open unit disk in the complex plane C and H(D) denote the class of
all analytic functions in D. Let ϕ be a complex-valued function in the plane.The superposition operator
Sϕ is defined as follows (see [2]):

Definition 1.1. Let X and Y be two metric spaces of H(D) and ϕ denote a complex-valued function
in the plane C such that ϕ ◦ f ∈ Y whenever f ∈ X, we say that ϕ acts by superposition from X into
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Y and the superposition operator Sϕ on X is defined by

Sϕ(f) = (ϕ ◦ f), f ∈ X. (1.1)

Observe that if X contains the linear functions and Sϕ maps X into Y , then Sϕ must be an entire
function.

The problem of boundedness and compactness of Sϕ has been studied in many Banach spaces of analytic
functions and the study of such operators has recently attracted the attention of many researchers (see,
for instance, [1,5,12,13]).
Now, we introduce the definition of the products of superposition operator followed by differentiation
operator as follows:

Definition 1.2. The differentiation operator D is defined by Df = f ′, while the operator DSϕ is
defined by DSϕ(f) = (ϕ ◦ f)′.

The Bloch type space is defined as follows (see [10,13]):

Definition 1.3. An analytic function f is said to belong to the Bloch space B if

B(f) = sup
z∈D

|1− |z|2||f ′(z)| < ∞. (1.2)

The expression B(f) defines a seminorm on B as follows

||f ||B = |f(0)|+ B(f).

Let B0 denote the subspace of B consisting of those f ∈ B such that

lim
|z|→1

(1− |z|2)|f ′(z)| = 0,

this space is called the little Bloch space.

The Hardy space can be defined as follows (see [14]):

Definition 1.4. The space H∞ denotes the space of all bounded analytic functions f on the unit disk
D such that

||f ||∞ = sup
z∈D

|f(z)| < ∞. (1.3)

It is well known that with the norm (1.3) the space H∞ is a Banach space. It is easy to see that the
space H∞ is contained in B and

||f ||B = sup
z∈D

|(1− |z|2)||f ′(z)| < ∥f ||∞.

Definition 1.5. Let Z denote the space of all f ∈ (H(D)) ∩ (C(D̄)) such that

||f ||Z = sup
z∈D

|f(eiθ+h) + f(eiθ−h)− 2f(eiθ)|
h

< ∞,

where the supremum is taken over all eiθ ∈ ∂D which denotes the boundary of D and h > 0. By the
Zygmund theorem and the closed-graph theorem (see [4, Theorem 5.3] ), we see that f ∈ Z if and only
if

sup
z∈D

|(1− |z|2)||f ′′(z)| < ∞.

Moreover, the following asymptotic relation holds:

||f ||Z ≍ sup
z∈D

|(1− |z|2)||f ′′(z)| < ∞, (1.4)
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therefore, Z is called the Zygmund class. Since the quantities in (1.4) are semi norms, it is natural to
add to them the quantity |f(0)| + |f ′(0)| to obtain two equivalent norms on the Zygmund class.The
Zygmund class with such a defined norm is called the Zygmund space. This norm is also denoted by
∥ . ∥Z . Some information on Zygmund type spaces on the unit disk and some operators on them can
be found in ( see [3,7–9]). The little Zygmund space Z0 was introduced by Li and Stević in (see [6]) in
the following natural way:

f ∈ Z0 ⇔ lim
|z|→1

|(1− |z|2)|f ′′(z)| = 0.

It is easy to see that Z0 is a closed subspace of Z and the set of all polynomials is dense in Z0.
Now, we introduce the definition of boundedness and compactness of the operator DSϕ : H∞ → Z.

Definition 1.6. The operator DSϕ : H∞ → Z is said to be bounded, if there is a positive constant C
such that ||DSϕf ||Z ≤ C||f ||∞ for all f ∈ H∞.

Definition 1.7. The operator DSϕ : H∞ → Z is said to be compact, if it maps any function in the
unit disk in H∞ onto a pre-compact set in Z.

In this paper we consider the product of the superposition operator followed by the differentiation
operator DSϕ(f). Throughout the paper we denote by the letter C, a positive constant, which may
vary at each occurrence but it is independent of the essential variables. The notation a ≼ b means that
there is a positive constant C such that a ≼ Cb. Also, the notation a ≍ b means that a ≼ b and b ≼ a
hold.

2 The boundedness of DSϕ : H∞ → Z

In this section we characterize the operator DSϕ : H∞ → Z. Moreover, we give the conditions which
prove the boundedness of the operator DSϕ. So, we list up the following two lemmas which are needed
to prove our main results.

Lemma 2.1. (see( [10])) Assume that f ∈ H∞. Then for each n ∈ N, there is a positive constant C
independent of f such that

sup
z∈D

(1− | z |)n | f (n)(z) | ≤∥ f ∥∞ .

The following lemma is introduced in (see [15]).

Lemma 2.2. Assume that f ∈ B. Then for each n ∈ N,

∥ f ∥B≍
n−1∑
j=0

| f (j)(0)|+ sup
z∈D

(1− | z |2)n | f (n)(z) |.

Now we introduce the main results of boundedness.

Theorem 2.3. Let ϕ be an entire function. Then the following statements are equivalent:
(a)DSϕ : H∞ → Z is bounded;
(b)DSϕ : B → Z is bounded;
(c)DSϕ : B0 → Z is bounded;
(d) The following conditions are satisfied.

sup
z∈D

| ϕ
′′′
(f(z)) |

(1− | z |2)2 < ∞, (2.1)

sup
z∈D

| ϕ
′′
(f(z)) |

(1− | z |2)2 < ∞, (2.2)

and

sup
z∈D

| ϕ
′
(f(z)) |

(1− | z |2)2 < ∞. (2.3)
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Proof. (b) ⇒ (a) and (b) ⇒ (c) are obvious. Now, we will prove that (d) ⇒ (a) and (d) ⇒ (b). Firstly
we show that (d) ⇒ (a). Let us assume that the conditions (2.1),(2.2) and (2.3) hold. Then, for z ∈ D
and f ∈ H∞(or B), by using Lemma 2.1 and Lemma 2.2, we obtain

∥ DSϕf ∥Z = sup
z∈D

| (1− | z |2)(DSϕf)
′′
(z) |

= sup
z∈D

(1− | z |2) | (ϕ
′′
(f(z))(f

′
)2(z) + ϕ

′
(f(z))f

′′
(z))

′
|

= sup
z∈D

(1− | z |2) | ϕ
′′′
(f(z))(f

′
)3(z) + 3ϕ

′′
(f(z))f

′
(z)f

′′
(z) + ϕ

′
(f(z))f

′′′
(z) |

≤ C(1− | z |2)
[

ϕ
′′′
(f(z))

(1− | z |2)3 ∥ f ∥2B +
3ϕ

′′
(f(z))

(1− | z |2)3 ∥ f ∥B +
ϕ

′
(f(z))

(1− | z |2)3

]
∥ f ∥B

≤ C

[
ϕ

′′′
(f(z))

(1− | z |2)2 ∥ f ∥2B +
3ϕ

′′
(f(z))

(1− | z |2)2 ∥ f ∥B +
ϕ

′
(f(z))

(1− | z |2)2

]
∥ f ∥B

≤ C(1− | z |2)
[

ϕ
′′′
(f(z))

(1− | z |2)3 ∥ f ∥2∞ +
3ϕ

′′
(f(z))

(1− | z |2)3 ∥ f ∥∞ +
ϕ

′
(f(z))

(1− | z |2)3

]
∥ f ∥∞

≤ C

[
ϕ

′′′
(f(z))

(1− | z |2)2 ∥ f ∥2∞ +
3ϕ

′′
(f(z))

(1− | z |2)2 ∥ f ∥∞ +
ϕ

′
(f(z))

(1− | z |2)2

]
∥ f ∥∞ . (2.4)

On the other hand, we have

| (DSϕf)(0) | = | ϕ
′
(f(0))f

′
(0) |

≤ Cϕ
′
(f(0)) ∥ f ∥B

≤ Cϕ
′
(f(0)) ∥ f ∥∞,

and

| (DSϕf)
′
(0) | = | ϕ

′′
(f(0))(f

′
)2(0) + ϕ

′
(f(0))f

′′
(0) |

≤ C[ϕ
′′
(f(0)) ∥ f ∥B +ϕ

′
(f(0))] ∥ f ∥B

≤ C[ϕ
′′
(f(0)) ∥ f ∥∞ +ϕ

′
(f(0))] ∥ f ∥∞ .

From the fact |ϕ(f(0))| < 1, by using the conditions (2.1), (2.2) and (2.3) it follows that the operator
DSϕ : H∞(or, B) → Z is bounded.
Now, we prove that (a) ⇒ (d). Assume that DSϕ : H∞ → Z is bounded, this means that there exists
a constant C such that

∥ DSϕf ∥Z ≤ C ∥ f ∥∞, (2.5)

for all f ∈ H∞. From the above inequality, by taking the function f(z) = z ,we have

sup
z∈D

(1− | z |2)ϕ
′′′
(f(z)) < C. (2.6)

From the fact that∥ ϕ ∥∞≤ 1, by using (2.6) and by taking the function f(z) = z2, we have that

sup
z∈D

4(1− | z |2)[2ϕ
′′′
(f(z))z3 + 3ϕ

′′
(f(z))z]

≤ C + C sup
z∈D

(1− | z |2) | ϕ
′′
(f(z))z |

≤ C. (2.7)

Similarly, from the fact that ∥ ϕ ∥∞≤ 1, by taking the function f(z) = z3, and by using (2.6), (2.7) we
have that

sup
z∈D

(1− | z |2)[27ϕ
′′′
(f(z))z6 + 54ϕ

′′
(f(z))z3 + 6ϕ

′
(f(z))] < C. (2.8)
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For a fixed w ∈ D, we consider the following test functions

fw(z) =
(1− | w |2)
1− wz

− (1− | w |2)2

(1− wz)2
+

1

3
(1− | w |2)3

(1− wz)3
. (2.9)

By the triangle inequality, we have

| fw(z) | ≤ |1|(1− | w |2)
1− |wz| +

| − 1|(1− | w |2)2

(1− |wz|)2 +
|1
3
|(1− | w |2)3

(1− |wz|)3 .

≤ (1− | w |2)
1− |w| +

|(1− | w |2)2

(1− |w|)2 +

1

3
(1− | w |2)3

(1− |w|)3 .

≤ 26

3
.

So, it is clear that for all fw ∈ H∞,

sup
w∈D

∥ fw ∥∞≤ 26

3
. (2.10)

Then

f
′
w(z) = (

(1− | w |2)
(1− wz)2

− 2(1− | w |2)2

(1− wz)3
+

(1− | w |2)3

(1− wz)4
)w (2.11)

f
′′
w(z) = (

2(1− | w |2)
(1− wz)3

− 6(1− | w |2)2

(1− wz)4
+

4(1− | w |2)3

(1− wz)5
)w2,

f
′′′
w (z) = (

6(1− | w |2)
(1− wz)4

− 24(1− | w |2)2

(1− wz)5
+

20(1− | w |2)3

(1− wz)6
)w3.

and
f

′
w(w) = 0, f

′′
w(w) = 0,

and
f

′′′
w (w) =

2w3

(1− | w |2)3 .

Thus for w ∈ D, we have
26

3
∥ DSϕ ∥ ≥ ∥ DSϕfw ∥Z

≥ (1− | w |2) | ϕ
′′′
(f(w))(f

′
w)

3(w) + 3ϕ
′′
(f(w))f

′
w(w)f

′′
w(w)

+ ϕ
′
(fw(w))f

′′′
w (w) |

≥ (1− | w |2)
∣∣∣∣2ϕ′

(f(w))w3

(1− | w |2)3

∣∣∣∣
≥

∣∣∣∣2ϕ′
(f(w))w3

(1− | w |2)2

∣∣∣∣. (2.12)

For δ ∈ (0, 1), by using (2.12) and (2.8) we have

sup
w∈D

∣∣∣∣ ϕ
′
(f(w))

(1− | w |2)2

∣∣∣∣ ≤ sup
|w|>δ

| ϕ
′
(f(w))

(1− | w |2)2 | + sup
|w|≤δ

| ϕ
′
(f(w))

(1− | w |2)2 |

≤ 1

δ3
sup
|w|>δ

| ϕ
′
(f(w))w3

(1− | w |2)2 | + 1

(1− δ2)2
sup
|w|≤δ

| ϕ
′
(f(w)) |

≤ C. (2.13)
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It follows that, the condition (2.3) holds, as desired.
Next, we prove the condition (2.2). To see this, for a fixed w ∈ D, put

gw(z) =
−2(1− | w |2)

1− wz
+

3(1− | w |2)2

(1− wz)2
− (1− | w |2)3

(1− wz)3
. (2.14)

Now, it is easy to prove that for gw ∈ H∞

sup
w∈D

∥ gw ∥∞≤ 24.

Then

g
′
w(z) = (

−2(1− | w |2)
(1− wz)2

+
6(1− | w |2)2

(1− wz)3
− 3(1− | w |2)3

(1− wz)4
)w, (2.15)

and

g
′′
w(z) = (

−4(1− | w |2)
(1− wz)3

+
18(1− | w |2)2

(1− wz)4
− 12(1− | w |2)3

(1− wz)5
)w2,

g
′′′
w (z) = (

−12(1− | w |2)
(1− wz)4

+
72(1− | w |2)2

(1− wz)5
− 60(1− | w |2)3

(1− wz)6
)w3.

Now,
g
′
w(w) =

w

(1− | w |2) ,

g
′′
w(w) =

2 w2

(1− | w |2)2 ,

and
g
′′′
w (w) = 0.

Thus for w ∈ D, we have
24 ∥ DSϕ ∥

≥ ∥ DSϕgw ∥Z
≥ (1− | w |2) | ϕ

′′′
(g(w))(g

′
w)

3(w) + 3ϕ
′′
(g(w))g

′
w(w)g

′′
w(w)

+ ϕ
′
(gw(w))g

′′′
w (w) |

≥ (1− | w |2)
∣∣∣∣ϕ′′′

(g(w))w3

(1− | w |2)3

∣∣∣∣
+ (1− | w |2)

∣∣∣∣6 ϕ
′′
(g(w))w3

(1− | w |2)3

∣∣∣∣
≥

∣∣∣∣ϕ′′′
(g(w))w3

(1− | w |2)2

∣∣∣∣+ ∣∣∣∣6 ϕ
′′
(g(w))w3

(1− | w |2)2

∣∣∣∣. (2.16)

For δ ∈ (0, 1), by using (2.16) and (2.7) we have

sup
w∈D

∣∣∣∣ ϕ
′′
(g(w))

(1− | w |2)2

∣∣∣∣+ sup
w∈D

∣∣∣∣ ϕ
′′′
(f(w))

(1− | w |2)2

∣∣∣∣
≤ sup

|w|>δ

∣∣∣∣ ϕ
′′
(g(w))

(1− | w |2)2

∣∣∣∣+ sup
|w|≤δ

∣∣∣∣ ϕ
′′
(g(w))

(1− | w |2)2

∣∣∣∣
+ sup

|w|>δ

∣∣∣∣ ϕ
′′′
(g(w))

(1− | w |2)2

∣∣∣∣+ sup
|w|≤δ

∣∣∣∣ ϕ
′′′
(g(w))

(1− | w |2)2

∣∣∣∣
≤ 1

δ3
sup
|w|>δ

∣∣∣∣ϕ′′
(g(w))w3

(1− | w |2)2

∣∣∣∣+ 1

(1− δ2)2
sup
|w|≤δ

| ϕ
′′
(g(w)) |

+
1

δ3
sup
|w|>δ

| ϕ
′′′
(g(w))w3

(1− | w |2)2 | + 1

(1− δ2)2
sup
|w|≤δ

| ϕ
′′′
(g(w)) |

≤ C. (2.17)
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It follows that we get the condition (2.2), as desired.
Now, we will prove the condition (2.1), for w ∈ D, put

hw(z) =
12(1− | w |2)

1− wz
− 8(1− | w |2)2

(1− wz)2
+

2(1− | w |2)3

(1− wz)3
. (2.18)

So, it is clear that for all hw ∈ H∞ and

sup
w∈D

∥ hw ∥∞≤ 72.

Then

h
′
w(z) = (

12(1− | w |2)
(1− wz)2

− 16(1− | w |2)2

(1− wz)3
+

6(1− | w |2)3

(1− wz)4
)w, (2.19)

h
′′
w(z) = (

24(1− | w |2)
(1− wz)3

− 48(1− | w |2)2

(1− wz)4
+

24(1− | w |2)3

(1− wz)5
)w2,

h
′′′
w (z) = (

72(1− | w |2)
(1− wz)4

− 192(1− | w |2)2

(1− wz)5
+

120(1− | w |2)3

(1− wz)6
)w3.

and
h

′
w(w) =

2w

1− | w |2 , h
′′
w(w) = 0, and h

′′′
w (w) = 0.

Thus for w ∈ D, we have

72 ∥ DSϕ ∥ ≥ ∥ DSϕhw ∥Z
≥ (1− | w |2) | ϕ

′′′
(h(w))(h

′
w)

3(w) + 3ϕ
′′
(h(w))h

′
w(w)h

′′
w(w)

+ ϕ
′
(hw(w))h

′′′
w (w) |

≥ (1− | w |2) | 8 ϕ
′′′
(h(w))w3

(1− | w |2)3 |

≥ | 8 ϕ
′′′
(h(w))w3

(1− | w |2)2 | . (2.20)

From (2.6) and (2.20), which is similar to (2.13), we get the condition (2.1).

(c) ⇒ (d). For w, z ∈ D and by using (2.11), (2.15) and (2.19), we have

| f
′
w(z) |≤

C1

1− | w | ,

| g
′
w(z) |≤

C2

1− | w |
and

| h
′
w(z) |≤

C3

1− | w | ,

where C1, C2 and C3 are constants, since our test functions fw(w), gw(w) and hw(w) also belong to
the little Bloch space B0. Similarly we can prove that (a) ⇒ (d), thus finishing the proof of Theorem
2.3.

Theorem 2.4. Let ϕ be an entire function. Then DSϕ : B0 → Z0 is bounded if and only if DSϕ :
B0 → Z is bounded and

lim
|z|→1

(1− | z |2)(| ϕ
′′′
(f(z)) | + | ϕ

′′
(f(z)) | + | ϕ

′
(f(z)) |) = 0. (2.21)
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Proof. Firstly, we assume that DSϕ : B0 → Z0 is bounded, then DSϕ : B0 → Z is bounded. If
we take the functions given by f(z) = z, f(z) = z2 and f(z) = z3, then from the boundedness of
DSϕ : B0 → Z0, we see that the condition of (2.21) follows.
Secondly, we assume that DSϕ : B0 → Z is bounded and (2.21) holds. Since for each polynomial p we
can obtain that

| (1− | z |2)(DSϕp)
′′
(z) |

= (1− | z |2) | ϕ
′′′
(p(z))(p

′
)3(z) + 3ϕ

′′
(p(z))p

′
(z)p

′′
(z) + ϕ

′
(p(z))p

′′′
|

≤ (1− | z |2)(| ϕ
′′′
(p(z)) |∥ (p

′
)3 ∥∞ +3 | ϕ

′′
(p(z)) |∥ p

′
∥∞∥ p

′′
∥∞)

+ (1− | z |2)(| ϕ
′
(p(z)) |∥ p

′′′
∥∞). (2.22)

Hence, for each polynomial p, DSϕp ∈ Z0 and by using the condition (2.21) we see that the set of all
polynomials is dense in B0, thus for every f ∈ B0, there is a sequence of polynomials {pk} such that
∥ pk − f ∥B → 0 as k → ∞.
In view of Theorem 2.3, the operator DSϕ : B → Z is bounded, so we have

∥ DSϕpk −DSϕf ∥Z≤∥ DSϕ ∥ . ∥ pk − f ∥B → 0 as k → ∞.

Hence DSϕ(B0) ⊂ Z0, since Z0 is a closed subset of Z. That ends the proof of Theorem 2.4.

3 The compactness of DSϕ : H∞ → Z

In this section, we characterize the compactness of the operator DSϕ : H∞ → Z. Moreover, we give
the conditions which prove the compactness of the operator DSϕ. For this purpose we list the following
two lemmas which are needed to prove our main results:

Lemma 3.1. Let ϕ be an entire function. Let X = H∞, B or B0. Then DSϕ : X → Z is compact if
and only if DSϕ : X → Z is bounded and for any bounded sequence {fn} in X which converges to zero
uniformly on compact subsets of D as n → ∞, we have ∥ DSϕfn ∥Z→ 0 as n → ∞.

The following second lemma was introduced and proved in [6] which is similar to the corresponding
lemma in [11].

Lemma 3.2. A closed set Kin Z0 is compact if and only if K is bounded and satisfies

lim
|z|→1

sup
f∈K

(1− | z |2) | f
′′
(z) |= 0.

Now, we begin with the necessary and sufficient conditions for the compactness of DSϕ : H∞ → Z.

Theorem 3.3. Let ϕ be an entire function. Then the following statements are equivalent:
(a)DSϕ : H∞ → Z is compact;
(b)DSϕ : B → Z is compact;
(c)DSϕ : B0 → Z is compact;
(d)DSϕ : B → Z is bounded and

lim
|ϕ(z)|→1

| ϕ
′′′
(f(z)) |

(1− | z |2)2 = 0, (3.1)

lim
|ϕ(z)|→1

| ϕ
′′
(f(z)) |

(1− | z |2)2 = 0, (3.2)

and

lim
|ϕ(z)|→1

| ϕ
′
(f(z)) |

(1− | z |2)2 = 0. (3.3)
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Proof. Since B0 ⊂ B, the implication (b) ⇒ (c) is obvious. Now, we will prove that (d) ⇒ (a) and
(d) ⇒ (b). Firstly we prove that (d) ⇒ (a). For any bounded sequence {fn} in H∞ (or B) with fn → 0
uniformly on compact subsets of D, by using Lemma 3.1, it is enough to prove that

∥ DSϕfn ∥Z→ 0 as n → ∞.

Suppose ∥ fn ∥∞≤ 1 (or, ∥ fn ∥B≤ 1). From (3.1), (3.2) and (3.3), given ϵ > 0, there exists a δ ∈ (0, 1),
when δ < |ϕ(z)| < 1, we have

(1− | z |2)( ϕ
′′′
(f(z))

(1− | z |2)3 +
ϕ

′′
(f(z))

(1− | z |2)3 +
ϕ

′
(f(z))

(1− | z |2)3 ) < ϵ. (3.4)

By the boundedness of DSϕ : H∞ → Z and Theorem 2.3, we see that (2.1), (2.2) and (2.3) are satisfied.
Since fn → 0 uniformly on the compact subsets of D, the Cauchy′s estimate gives that f

′
n, f

′′
n and f

′′′
n

converge to 0 uniformly on the compact subsets of D. Hence there is an N0 ∈ N such that for n > N0

| ϕ
′
(f(0))(f

′
n)(0) | + | ϕ

′′
(f(0))(f

′
n)

2(0) | + | ϕ
′
(f(0))(f

′′
n )(0) |

+ sup
|z|≤δ

(1− | z |2) | ϕ
′′′
(f(z))(f

′
n)

3(z) + 3ϕ
′′
(f(z))f

′
n(z)f

′′
n (z) + ϕ

′
(f(z))f

′′′
n |

≤ Cϵ. (3.5)

From (3.4) and (3.5) we have

∥ DSϕfn ∥Z
≤ | (DSϕfn)(0) | + | (DSϕfn)

′
(0) | +sup

z∈D
(1− | z |2) | (DSϕfn)

′′
(z) |

≤ | ϕ
′
(f(0))(f

′
n)(0) | + | ϕ

′′
(f(0))(f

′
n)

2(0) | + | ϕ
′
(f(0))(f

′′
n )(0) |

+ sup
z∈D

(1− | z |2) | ϕ
′′′
(f(z))(f

′
n)

3(z) + 3ϕ
′′
(f(z))f

′
n(z)f

′′
n (z) + ϕ

′
(f(z))f

′′′
n (z) |

≤ | ϕ
′
(f(0))(f

′
n)(0) | + | ϕ

′′
(f(0))(f

′
n)

2(0) | + | ϕ
′
(f(0))(f

′′
n )(0) |

+ sup
|z|≤δ

(1− | z |2) | ϕ
′′′
(f(z))(f

′
n)

3(z) + 3ϕ
′′
(f(z))f

′
n(z)f

′′
n (z) + ϕ

′
(f(z))f

′′′
n (z) |

+ sup
δ<|z|<1

(1− | z |2) | ϕ
′′′
(f(z))(f

′
n)

3(z) + 3ϕ
′′
(f(z))f

′
n(z)f

′′
n (z) + ϕ

′
(f(z))f

′′′
n (z) |

≤ Cϵ+ C sup
δ<|z|<1

(1− | z |2)( ϕ
′′′
(f(z))

(1− | z |2)3 +
ϕ

′′
(f(z))

(1− | z |2)3 +
ϕ

′
(f(z))

(1− | z |2)3 )

≤ 2Cϵ. (3.6)

when n > N0. It follows that the operators DSϕ : H∞ (or, B) → Z is compact. Now, we shall prove
the second direction that (a) ⇒ (d). We assume that DSϕ : H∞ → Z is compact. Then it is clear that
DSϕ : H∞ → Z is bounded. Let {zk} be a sequence in D such that |ϕ(zk)| → 1 as k → ∞. If such a
sequence does not exist then (3.1) - (3.3) automatically hold. We use the following test functions

fk(z) =
(1− | zk |2)
1− zkz

− (1− | zk |2)2

(1− zkz)2
+

1
3
(1− | zk |2)3

(1− zkz)3
. (3.7)

It is easy to prove that
sup
z∈D

∥ fk ∥∞≤ 26

3
,

f
′
k(zk) = 0,

f
′′
k (zk) = 0,

and
f

′′′
k (zk) =

2 zk
3

(1− | zk |2)3 .
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It is clear that fk converges to 0 uniformly on the compact subsets of D, using (2.13) and the compact-
ness of DSϕ : H∞ → Z we get

(1− | zk |2)
∣∣∣∣2ϕ′

(f(zk))zk
3

(1− | zk |2)3

∣∣∣∣
= (1− | zk |2)

∣∣∣∣ϕ′′′
(f(zk))(f

′
k)

3(zk) + 3ϕ
′′
(f(zk))f

′
k(zk)f

′′
k (zk) + ϕ

′
(f(zk))f

′′′
k

∣∣∣∣
≤ ∥ DSϕfk ∥Z→ 0 as k → ∞. (3.8)

From this and |ϕ(zk)| → 1, it follows that

lim
k→∞

ϕ
′
(f(zk))

(1− | zk |2)2 = 0,

thus, we get (3.3).
In order to prove (3.2), we use the following test functions

gk(z) = −2(1− | zk |2)
1− zkz

+
3(1− | zk |2)2

(1− zkz)2
− (1− | zk |2)3

(1− zkz)3
. (3.9)

It is easy to prove that
sup
z∈D

∥ gk ∥∞≤ 24,

g
′
k(zk) =

zk
(1− | zk |2) ,

g
′′
k (zk) =

2 zk
2

(1− | zk |2)2 ,

and
g
′′′
k (zk) = 0.

Since gk converges to 0 uniformly on compact subsets of D, the compactness of DSϕ : H∞ → Z implies
that

lim
k→∞

∥ DSϕgk ∥Z= 0.

From (2.16) we obtain

(1− | zk |2) | ϕ
′′′
(f(zk))zk

3

(1− | zk |2)3 | +(1− | zk |2)
∣∣∣∣6ϕ′′

(f(zk))zk
3

(1− | zk |2)3

∣∣∣∣ ≤ C ∥ DSϕgk ∥Z→ 0

as k → ∞.
Thus,

lim
k→∞

ϕ
′′
(g(zk))

(1− | zk |2)2 = 0,

lim
k→∞

ϕ
′′′
(g(zk))

(1− | zk |2)2 = 0.

So, (3.2) holds. Finally we take the following test function

hk(z) =
12(1− | zk |2)

1− zkz
− 8(1− | zk |2)2

(1− zkz)2
+

2(1− | zk |2)3

(1− zkz)3
. (3.10)

It is clear that
sup
z∈D

∥ hk ∥∞≤ 72,

where,
h

′
k(zk) =

2 zk
1− | zk |2 ,

h
′′
k (zk) = 0,
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h
′′′
k (zk) = 0,

and hk converges to 0 uniformly on the compact subsets of D, the compactness of DSϕ : H∞ → Z
implies that

lim
k→∞

∥ DSϕhk ∥Z= 0.

From this and (2.20) we obtain (3.1), the implication thus follows.

(c) ⇒ (d). Since our test functions fk(z), gk(z) and hk(z) also belong to the little Bloch space, following
a similar way as in the proof of (a) ⇒ (d), we can obtain the desired result. This concludes the proof
of this theorem.

Next we prove the following theorem:

Theorem 3.4. Let ϕ be an entire function. Then the following statements are equivalent:
(a)DSϕ : H∞ → Z is compact;
(b)DSϕ : B → Z0 is compact;
(c)DSϕ : B0 → Z0 is compact;
(d) The following conditions are satisfied

lim
|ϕ(z)|→1

| ϕ
′′′
(f(z)) |

(1− | z |2)2 = 0, (3.11)

lim
|ϕ(z)|→1

| ϕ
′′
(f(z)) |

(1− | z |2)2 = 0, (3.12)

and

lim
|ϕ(z)|→1

| ϕ
′
(f(z)) |

(1− | z |2)2 = 0. (3.13)

Proof. The proof of (b) ⇒ (c) is obvious. Now, we prove that (d) ⇒ (a) and (b). By taking the supre-
mum in inequality (2.4) over all f ∈ H∞(or, f ∈ B) such that ∥ f ∥∞≤ 1 ( correspondingly, ∥ f ∥B≤ 1),
and letting |z| → 1, yields

lim
|z|→1

sup
∥f∥∞≤1

(1− | z |2) | (DSϕf)
′′
(z) |= 0,

or,
lim

|z|→1
sup

∥f∥B≤1

(1− | z |2) | (DSϕf)
′′
(z) |= 0.

Therefore, by Lemma 3.2, we see that the operator DSϕ : H∞(or, B) → Z0 is compact.
(a) or (c) ⇒ (d). Now we assume that DSϕ : H∞(or, B0) → Z0 is compact. Thus, DSϕ : H∞(or, B0) →
Z0 is bounded, and by choosing the function f(z) = z, it follows that

lim
|z|→1

(1− | z |2) | (ϕ(f(z)))
′′′

|= 0. (3.14)

By choosing the function f(z) = z2, we get

lim
|z|→1

(1− | z |2) | 2(ϕ(f(z)))
′′′
z3 + 3(ϕ(f(z)))

′′
z |= 0. (3.15)

From (3.14), (3.15) and the fact that ∥ ϕ ∥∞≤ 1, we get

lim
|z|→1

(1− | z |2) | (ϕ(f(z)))
′′
|= 0. (3.16)
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By choosing the function f(z) = z3, we have

lim
|z|→1

(1− | z |2) | 27(ϕ(f(z)))
′′′
z6 + 18(ϕ(f(z)))

′′
z3 + (ϕ(f(z)))

′
|= 0. (3.17)

From (3.14), (3.16), (3.17) and the fact that ∥ ϕ ∥∞≤ 1, we get

lim
|z|→1

(1− | z |2) | (ϕ(f(z)))
′
|= 0. (3.18)

By (2.12), (2.16), (2.20) and DSϕfw, DSϕgw, DSϕhw ∈ Z0 we know that

lim
|ϕ(z)|→1

| ϕ
′′′
(f(z)) |

(1− | z |2)2 = 0, (3.19)

lim
|ϕ(z)|→1

| ϕ
′′
(f(z)) |

(1− | z |2)2 = 0, (3.20)

and

lim
|ϕ(z)|→1

| ϕ
′
(f(z)) |

(1− | z |2)2 = 0. (3.21)

We have thus proved that (3.14) and (3.19) imply (3.11). The proofs of (3.12) and (3.13) follow by
the same procedure, thus we omit them. From (3.19), it follows that for every ϵ > 0, there exists a
δ ∈ (0, 1) such that

| ϕ
′′′
(f(z)) |

(1− | z |2)2 < ϵ, (3.22)

when δ < |z| < 1. Using (3.14) we see that there exists a τ ∈ (0, 1) such that

| ϕ
′′′
(f(z)) | < ϵ(1− δ2)2, (3.23)

when τ <| z |< 1.
Then, when τ <| z |< 1 and δ < |z| < 1 by (3.22) we get

| ϕ
′′′
(f(z)) |

(1− | z |2)2 < ϵ. (3.24)

On the other side, when τ <| z |< 1 and |z| ≤ δ by (3.23) we get

| ϕ
′′′
(f(z)) |

(1− | z |2)2 ≤ | ϕ
′′′
(f(z)) |

(1− δ2)2
< ϵ. (3.25)

4 Conclusion

In this paper we characterized the boundedness and the compactness of the new product operator DSϕ,
the so-called product of the superposition operator followed by the differentiation operator from H∞

to Zygmund space. Moreover, we proved that the properties of boundedness and compactness still hold
for this operator from H∞ to Zygmund spaces and we gave the conditions which guarantee that the
product operator DSϕ is bounded and compact.
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