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Abstract In this paper, an effort is made to study the Power Function and Average
Run Length (ARL) of Zero-Truncated Poisson Distribution (ZTPD) under inspection er-
ror. An investigation is also made to calculate the power function of control chart for
variable sample size for ZTPD under inspection error.
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1 Introduction

The foremost principle of inspection is to take apart products that conform to the measurement. The
inspections of raw materials or in process products or the end products are the significant parts of
quality assurance. Quality characteristics obtained from inspections are drawn in the control charts in
order to scrutinize and control the product procedure. However, the traditional control chart methods
presuppose that inspection process has no fault, but, in fact, the inspection error is very complicated
to avoid whatsoever using visual or mechanical detection. Kanazuka [6] discussed that if the inspection
error is large relative to the process variability then it results in the control chart to perceive a shift
in the process level being affected. Walden [8] measured the power of X̄, R and X̄ − R charts using
ARL when inspection error affects the system. Chang and Gan [1] widened Shewhart control chart for
scrutinizing the linearity among two measurement gauges. Huwang and Hung [4] considered the effect
of inspection error on the control charts for screening multivariate process variability. Yang et al. [10]
developed a process model to take into account the measurement error on two dependent processes.
Xiaohong and Zhaojun [9] inspected the cause of measurement error on the CUSUM chart for the
autoregressive data. Costa and Castagliola [3] observed the consequence of measurement error and
autocorrelation on the X-chart. Moameni et al. [7] considered the consequence of measurement error
on the effectiveness of the fuzzy control chart to identify out-of-control situations.
The power of any test of statistical importance is described as the probability that it will decline a
false null hypothesis. Statistical power is affected primarily by the size of the effect and the size of
the sample used to identify it. Major effects can be detected effortlessly than minor effects, while
large samples recommend greater test sensitivity than small samples. Power analysis can be used to
examine the minimum sample size required so that one can be practically prone to identify an effect
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of a given size. Furthermore, to calculate among different statistical testing procedures, power analysis
is exercised: for example, among a parametric and a nonparametric test of the same hypothesis. The
ARL is the average number of points plotted on the chart before an out-of-control condition is signaled.
Alternatively ARL can be defined as the average number of points plotted within the limit of control
limits of control chart when assessing the process activities for a business operation. On the whole, this
tests the precision of business operation over an extended phase of time or large number of performance
cycles. It is considered until an unexpected condition in due course occurs that falls significantly outside
the average run length.

In this paper we consider the effects of inspection error on the power of control chart and measure
the value of average run length for ZTPD. Keeping in mind that the inspection error increases with
the decrease in sample size, we also derive the power of control chart for variable sample size under
standardized normal variate under inspection error for ZTPD.

2 Power of control chart for ZTPD under inspection error

In probability theory, the zero-truncated Poisson distribution (ZTPD) is a definite discrete probability
distribution which consists of a set of positive integers. This distribution is also acknowledged as the pos-
itive Poisson distribution. It is the conditional probability distribution of a Poisson-distributed random
variable, provided that the value of the random variable is not zero. Thus it is impracticable for a
ZTP random variable to be zero. Consider for example the random variable of the number of items
in a shopper’s basket at a supermarket checkout line. Presumably a shopper does not stand in line
with nothing to buy, so this observable fact may follow a ZTP distribution. Johnson et al. [5] called
the zero-truncated Poisson as positive Poisson random variable and the same is called the conditional
Poisson random variable by Cohen [2] and it is a Poisson distribution with parameter θ and p (0) = 0.
Thus, it is required to scale the other probabilities by a factor of 1/1 − p(0) where p (0) = e−θ, the
original probability that x = 0, in order to still have a discrete probability function.

Since the ZTP is a truncated distribution with the truncation stipulated as k > 0, one can derive
the probability mass function g (k, θ) as follows:

g (k, θ) =
e−θθk

k!(1 − e−θ)
. (2.1)

for k = 1, 2, . . ., where θ > 0. The mean and variance of the function given by (2.1) is:

Me =
θ

(1 − e−θ)
(2.2)

and

Va
2 =

θ
(

1 − e−θ(1 + θ)
)

(1 − e−θ)2
. (2.3)

In exercising zero truncated Poisson distribution under inspection error, a sample is acquired and the
number of non-conformities is calculated. Again, the two types of error are (i) falling short to find
one or more of the non-conformities in the sample and (ii) proclaiming one or more nonconformities
when none exist (a false alarm). Let r be the probability that non-conformity is appropriately noted
by the inspector and the number of non-conformities is assumed to follow ZTPD and let θF be the
average number of false alarms per part. If θ is the true value of the first moment of the number of
non-conformities per part and θ

′

is the average number of non-conformities per part observed by the
inspector, then we set:

θ
′

= rθ + θF (2.4)

with both r and θF estimated.

It is assumed that at the time of determining the control limits the process is in a state of statistical
control. Thus, the data used for establishing the limits on the control charts comes from a process that
is ZTP (Me, V

2
a /n). When the process shifts, the data is assumed to come from the ZTP (M

′

e, V
′2

a /n),

where M
′

e = θ
′

(1−e−θ
′

)
and V

′2
a =

θ
′

(

1−e
−θ

′

(1+θ
′

)

)

(1−e−θ
′

)
2 . Furthermore, in Shewhart control chart the central
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line signifies hypothesized mean value of the process parameter, the control limits signifies the decisive
values of the two-sided test for the null hypothesis acceptance region and every point corresponds to a
test value for the given sample. Variable control chart procedures used for comparison of population
implies two separate consecutive steps where the general null hypothesis is split into two simple null
hypothesis concerning population means and variances:

(i) H0 : V 2
a = V

′2
a versus H0 : V 2

a 6= V
′2

a ,

(ii) H0 : Me = M
′

e versus H0 : Me 6= M
′

e .

If the point falls outside the corresponding control limits, the null hypothesis is rejected. Rejection of
at least one of the simple null hypothesis leads to the rejection of the general null hypothesis. Thus,
a basic assumption made in most traditional applications of control charts is that the observations
from the process are independent. When the mean of the observations is being monitored, the mean is
assumed to be constant at the target value until a special cause occurs and produces a change in the
mean.
In the development of the power of the control chart and ARL for ZTPD given by (2.1), the following
suppositions are made and denotations are used:

• the process has ZTPD with mean and variance given by the equation (2.2) and (2.3) respectively;

• the process is in a state of statistical control at the time of determining the control limits and
the same measuring instrument is used for later inspection;

• when the process parameter shifts, the data also come from ZTPD with mean M
′

e and variance Va

′2;

• the inspection of items has been taken to ascertain the number of defects per unit.

Under the above assumptions, Shewhart control limits for ZTPD will be:

UCL = M
′

e + 3V
′

a ; CL = M
′

e ; LCL = M
′

e − 3V
′

a. (2.5)

If we assume that X is a ZTP variate with mean M
′

e and variance Va

′2 then the power of detecting
the change of process parameter for ZTPD is given by:

P
θ
′ = P

{

X ≥ M
′

e + 3V
′

a

}

+ P
{

X ≤ M
′

e − 3V
′

a

}

. (2.6)

Pθ′ = P

{

X >
θ′

(1 − e−θ′)
+ 3

√

θ′ (1 − e−θ′ (1 + θ′))

(1 − e−θ′)
2

}

+

P

{

X 6
θ′

(1 − e−θ′)
− 3

√

θ′ (1 − e−θ′ (1 + θ′))

(1 − e−θ′)
2

}

,

(2.7)

P
θ
′ = [1 − P {X ≤ UCL}] + P [{X ≤ LCL}] , (2.8)

P
θ
′ =

[

1 −
UCL
∑

w=LCL

e−θθk

w!(1 − e−θ)

]

. (2.9)

The calculation and graphical representation of P
θ
′ for equation (2.9) is shown below in Table 1 (Fig.

1) and Fig. 2 respectively.

3 Average run length (ARL)

It is the expected value of the run length distribution. For any Shewhart control chart, the ARL
is ARL =

[

P
θ
′

]−1
where P

θ
′ is the probability that a single point exceeds the control limits. The

probability of not detecting this shift on the first subsequent sample or β risk (see, Montgomery [11])
is:

β = P
{

X ≥ UCL/θ′
}

+ P
{

X ≤ LCL/θ′
}

. (3.1)

It is related to the Power curve as follows:

ARL = [1 − β]−1 and Power(P
θ
′ ) = 1 − β, (3.2)
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Fig. 1: Table 1. Power of control chart for ZTPD.

where,

β = P











X ≥ θ
′

(1 − e−θ
′

)
+ 3







θ
′

(

1 − e−θ
′

(1 + θ
′

)
)

(1 − e−θ
′

)
2







−1









. (3.3)

The values of ARL obtained by using (3.3) and its diagrammatical representation are shown in Table
2 (Fig. 3) and Fig. 4 respectively.

4 Numerical illustration

For the purpose of numerical illustration, we will consider four cases as:

(r, θF ) = (1, 0) , (1, 2) , (0.8, 0) , (0.8, 2).

The first case corresponds to sampling without inspection error while the other three represent different
error rates. Also, to calculate the power function given by the equation (2.9), we consider a process
with a targeted value or currently operating value of θ = 12, so that UCL and LCL are given by (2.5)
as:

UCL = 12 + 3
√

12 = 22.3923 = 22

CL = 12

LCL = 12 − 3
√

12 = 1.6076 = 2

The Table-1 (Fig. 1) and Fig. 2 illustrate the power function and power curve corresponding to the
above four cases. From Table-1 (Fig. 1) one can see that (1, 2) results in a shifting of the power
function curve to the left. This occurs because r = 1 means that none of the non-conformities were
missed while θF = 2, means that there will be, on an average, two false alarms per part and this will
shift the power curve two units to the left of the true power curve. An error rate of (0.8, 0) results in a
shift of the power curve to the right. A value of r = 0.8 means that the inspector is finding only 80% of
the non-conformities. An error rate of (0.8, 2) shifts the power curve two units to the left of the power
curve for (0.8, 0). The power curve for (0.8, 2) is closer to the true curve because the average of two
false alarms per part partially compensates for the inspector finding only 80% of the non-conformities.
On the whole, while coming across the visual comparison through Fig. 2 reveals that inspection errors
result in power curves considerably different from that obtained under error free inspection.
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Fig. 2: Power of control chart for ZTPD.

 

Fig. 3: Table 2. Values of ARL for ZTPD control chart.

From Table 2 (Fig. 3) it can be easily interpreted that, an error rate of (0.8, 0) results in a shifts of
the ARL curve to the right of the true curve i.e., it is highly affected by the inspection error. An error
rate of (0.8, 2) shifts the ARL curve to the left of the true curve (1, 0). This occurs because inspector
is finding only 80% of the non-conformities.

Overall, coming across the visual comparison through Fig. 4 reveals that the inspection errors result
in ARL curves significantly dissimilar from that obtained under error free inspection.

5 Conclusion

In this paper we see that both types of errors i.e. deteriorating to note non-conformity and noting one
where none exists, critically affect the power curves and ARL curves. The inspection error rates that
are inevitable in industry seriously affect the power curve of a ZTPD control chart especially, when
the center line and control limits are based on a target value, the process can very easily be moderated
in-control when, in fact, it is not. When the control chart is based upon data obtained under inspection
error, the Power and ARL curve is again indistinct, but not nearly so seriously.
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Fig. 4: ARL for ZTPD control chart.
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