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Abstract In this paper, we investigate the necessary and sufficient conditions for a
composition operator Cy to be bounded and compact from B to Q.. (p,q). Moreover,
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QK. (p,q) to be compact is also given in terms of the map ¢.
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1 Introduction

Let ¢ be an analytic self-map of unit disk D = {z € C : |z| < 1} in the complex plane C and let
dA(z) be the Euclidean area element on D. The composition operator Cy induced by ¢ is the linear
map on the space of all analytic functions on D given by

Co(f)=fo9.

We recall some basic properties of boundedness and compactness of composition operators in Banach
spaces of analytic function. In 1993, Shapiro [16] studied the compactness problem for composition
operators and classical function theory. Subsequently, this concept was studied for characterization
of the compact composition operators on the Bloch space (see, e.g [10]). During the last decades,
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Boundedness of composition operators ... 47

Tjani [18] studied compact composition operators on the Besov spaces and the same problem on
BMOA was studied by Bourdon, Cima and Matheson in [4] and Smith and Zhao in [17]. Recently,
Li and Wulan in [9] gave a characterization of compact operators on Qx and F(p,q, s) spaces. Also,
Jiang and He [8] studied the boundedness and compactness of composition operators from the Bloch
space into the general Besov space.

In this paper, we study compact composition operator on the spaces Qx . (p, q). We define and discuss
the properties of these spaces. A particular class of Mobius-invariant function spaces, the so-called Q x
spaces, has attracted a lot of attention in recent years. For a € D the Mdbius transformation ¢, (z) is
defined by

wa(z) = = , for z € D.
az
The following identity is easily verified:

(L —lal) (A —|2[*)

11— az]?

1= lga(2)|* = = (1~ |21)lea(2)l-

Note that @a(¢a(2)) = z and thus p;'(2) = @a(2). For a,z € D and 0 < r < 1, the pseudo-
hyperbolic disc D(a,r) is defined by D(a,r) = {z € D : |pa(z)| < r}.

Let the Green’s function of D with logarithmic singularity at a be

1—&2‘
= log
a

g(z,a) = log

z— lpa(2)]

Definition 1.1. [11] A family F of holomorphic functions in D is analytic normal if every sequence
of functions {fn(z)} C F contains a subsequence {fn, (2)} such that the sequence {fn,(z) — fn,(0)}
converges uniformly on the compact subsets of D to some function in the Euclidean metric.

Definition 1.2. [16] Let f be an analytic function in D and let 0 < p < co. If

27

[fll; = sup |f(re")[Pd < oo,

o<r<1 2T

then f belongs to the Hardy space H?. If ||f|lco = sup,cp |f(2)| < oo, then f belongs to the Hardy
space H*. Moreover, f € H? if and only if

/D F (1 = 2P)dA(z) < oo.

Two quantities Ay and By, both depending on an analytic function f on D, are said to be equivalent,
written as Ay ~ By, if there exists a finite positive constant C not depending on f such that for every
analytic function f on D we have:

1
EBf < Af < CBf.
If the quantities Ay and By, are equivalent, then, in particular, we have Ay < oo if and only if By < co.

Now, given a reasonable function w : (0,1] — [0, 00), the weighted Bloch space B, (see [5]) is defined
as the set of all analytic functions f on D satisfying

1= [2DIf' ()] < Cw(1 ~2l), z€D,

for some fixed C' = Cy > 0. In the special case where w = 1, B, reduces to the classical Bloch space
B. Here, the word “reasonable” is a non-mathematical term; it is just intended to mean “not too bad”
and the function satisfies some natural conditions. Now, we introduce the following definitions:

Definition 1.3. For a given reasonable function w : (0,1] — [0,00) and for 0 < o < oo, an analytic
function f on D is said to belong to the a—weighted Bloch space BS if

o A= 2D
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48 A. Kamal, S.A. El-Hafeez, Lalit Mohan Upadhyaya and Ayman Shehata

Definition 1.4. For a given reasonable function w : (0,1] — [0,00) and for 0 < o < oo, an analytic
function f on D is said to belong to the little weighted Bloch space B , if

. 1-—1z))°
||f||330:‘hm (1—12])

A—1- m” (z)| = 0.

Throughout this paper and for some techniques we consider the case of w # 0. Now, we introduce the
following definition (see [14]):

Definition 1.5. For a nondecreasing function K : [0, 00) — [0,00),0 < p < 00, —2 < ¢ < oo and for a
given reasonable function w : (0,1] — (0, 00), an analytic function f in D is said to belong to the space

Qrw(p, q) if

fMena = s [ IFGPQ =12 SEED a4 < o

We assume throughout the paper that

1
/ (1 1) 2K (log 2 )rdr < oo. (1.1)

0 r
The authors of [14] collected the following immediate relations of Qk . (p, ¢) and Q k. w,0(p, ¢) as follows:

Theorem 1.6. Let 0 < p < 0o, —2 < ¢ < o0. Then, for each non-decreasing function K : [0,00) —
[0,00) and for a given reasonable non-decreasing function w : (0,1] — (0, 00) with w(kt) ~ w(t), k >0,

we have that )

+

(Z) QK&U (pa Q) C Bw and
2

(i) Qw(p,q) =B." , iff

I
'c|+ =

! 1 r

The following lemma is useful for our study (see [14]).

Lemma 1.7. Let K : [0,00) — [0,00), 0 < p < 00, =2 < ¢ < 00 and w : (0,1] — (0,00). Then
a+2
(3) f € Bu?” if and only if there exists R € (0,1) such that

su ") —qu z) < 00
swp [ PP 0 ) SEE 4G <

a+2
(it) f e B,% if and only if there exists R € (0,1) such that

| o 1 oy o)
Jm [ TP ST dAE) =0

The following lemma is proved by Ohno et al., in [12]:

Lemma 1.8. Assume that o > 0. A closed set n in By is compact if and only if it is bounded and
satisfies lim sup(1 — |z|*)¥|f'(z)] = 0.
T fen

|z|—1
2  Holomorphic Qx . (p,q) spaces

In this section we study the weighted Q k. (p, q) spaces with the help of the weighted a—Bloch spaces
BS. Our results will be needed to study the composition operators between Q. (p, ¢) and the weighted
a— Bloch spaces.

To study the composition operators on Q k. (p, q) spaces, we prove the following result:
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Boundedness of composition operators ... 49

Theorem 2.1. Let 0 < a < o0, 0<7r<1,0<p<oo, —2<q<oow: (0,1 — [0,00) and
K : (0,00) — (0,00). Also, let f be an analytic function on D. Then the following quantities are
equivalent:

(4) £ < oo.
(B) For 0 < a < 00 and 0 < p < oo, we have

1 P
sup ———————4 ——— | dA(z) < oo.
2B |D(a,r) = [ fo @ (sit) 44

(C) For 0 < a< 00 and 0 < p < 0o, we have

wp [ [ e (1-1) " (i) 40 <

(D) For 0 < a< o0 ,0<p<ooand —2 < q < oo, we have

wwp [ [ WP = e () A6 <o

(E) For 0 < a < 00 and 0 < p < 0o, we have
sup// (log L )p&|gpl (z)|2(;)p dA(z) < oo
a€eD D(a, 7‘) | | ‘ (4)(1 - ‘ZD .

23] fp, O Kot )07 (G ) ) <o

Proof. Let 0 < a < 00,0 <7< 1,0 < p < oo and K : (0,00) — [0,00). Because for every analytic
function g on D, |g|? is a subharmonic function we have

P
‘ = mﬂz//D(OT) w)’ dA(w

(F)

Set g = f’ 0 4, we obtain that

)P < // I o ga(w)|[PdA(w
’ ( )‘ ps;) D((ﬁ)! |
p(1—lpa(2)[*)?
= 7&4
7'('7’2 //];(a ™) | 17|Z| ) ( )

Since,

1 - |pa(2))? / —lea(2)[?

= <
T 2F |pa(2)|, where T—E S 1= a,z€D

(see [24]). Then, we obtain that

|f'(a)]” < W//D(Myf(z)y”dmz)

Therefore, by (1 — |a|*)? ~ (1 — |2]*)?> ~ |D(a,r)|, for z € D(a,r), we deduce that

(@) Aleb? 16(1 — |a])™ // rdA
|f'(a)] WP=I2D = 7p2(1 — [a?)2wP (1 — |2]) D, r) f'(2)] (2).
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Since (1 — |a|)® ~ (1 — |a|*)?, then

/ P (1 = |a)* )P
|/ (a)] wP(1 —|z]) < mr2(1 — |a|)2 payr (1 —|z|) //D(a " )7 dA(z)

7rr2|D w2 |D(a,r)|F // (= ( |Z|)) dA(z)
s / Lrer (i) e,

where A is a positive constant and M (r) = % is a constant depending on r. Thus the quantity (A) is

less than or equal to a constant times the quantity (B).
From |D(a,r)| ~ (1 — |2*)? for all z € D(a,r), it is obvious that (B) ~ (C). By 1 — |pa(2)|> > 1 — 2
and 1 — |@a(2)] > 1 —r for z € D(a,r), we thus obtain

[ L ez (i) o
- //Dmm) F@Fa -l (w(l i IZI)>p§8 - :ZZES:Q;M(Z)
< T [ fy, A (it ) KO- len@Paae).

Hence, the quantity (C) is less than or equal to a constant times the qauntity (D). By 1 — |pa(2)]* <
29(z,a) for all z,a € D, we obtain that the quantity (D) is less than or equal to a constant times of
the quantity (F).

From the following inequality

PP -1 (=) K(g(e, ) dAG)
/Lo (G

= [ [ 1wl = leatu () < Com ) i
<l [ [ (E,T)Kaog';—')%7

IA

where

1 2y—2
C(K,2) = / (/D(a’r) K (log m)(l — Jw|”) " "dA(w) < oo,

then we deduce that the quantity (E) is less than or equal to a constant times (A).
Now, from the inequality 1 — |z|? < 2log ﬁ for every z € D, putting K(1 — |a(2)]) = (1 = |pa(2)])?
in (D), we see that the quantity (D) is less than or equal to the quantity (E). Finally, let

@= [ f 1 (o) 1 () aace)
(//D //D\m)‘f (108 ) 1P (s ) 4462

= h(a )+12( ),
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Boundedness of composition operators ... 51

(1-la?) <

where for z € Dy = {z:]2] < 1}, |ea(2)]? Tazt

(17|1z‘)4 < (3)*, then we obtain

//D @ (o) 1o (s ) 4@
<k | [ ( )l o aac)
< ||f||P5(§)m+4 / /D ; (log ﬁ)mm(z)

4\ pa
= (3)" .0 f g

a)_//"i (log%)padA(z)<oo

Now, for z € D\Di’ we know that log |71‘ < 4(1 —|2*) <8(1 —|z|), then

os<s | /D\Dl A (ros 7)ot () 4

< 87 // m 2)PdAG) < M| fIg

where

where A1 is a positive constant. Hence, the quantity (E) is less than or equal to a constant times the
quantity (A). The proof is complete. O

For BS , we have the corresponding result with Theorem 2.1.

Lemma 2.2. [13] Let w: (0,1] — (0,00) and let 1 < a < co. Then there are two functions f1, fa € B
such that

w(l —2))
(1 —lz

[fi(2)| + 1 fa(2)] ~ zeD. (2.1)

3 Boundedness of composition operators.

g+2
In this section we study the boundedness of composition operators on Qx,.(p,q) spaces and B,”
spaces. We need the following notation.

L LY 0= puD) o
Poscolvaia) = [ 10 o U K (gl a)dAG),

for 0 <p<oo,—2<g<oo,w: (0,1] — (0,00), and K : [0,00) — [0, 0).

Now, we give the following theorem:

Theorem 3.1. Let K(r) # 0 be a nonnegative, nondecreasing function on 0 < r < oo, w : (0,1] —
a+2

(0,00), and let ¢ be an analytic self-map of D. Then Cy : B.? — QK ,w(p,q) is bounded if and only if

sup @y, k.0 (P, ¢; @) < 00. (3.1)
a€eD
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52 A. Kamal, S.A. El-Hafeez, Lalit Mohan Upadhyaya and Ayman Shehata

a+2
Proof. Let (3.1) hold and let C?(Cy > 0) be the supremum in (3.1). If f € B,” , then for all a € D,
we have

1Co e =330 [ 1700y P 1= 1y S P g

= sup [ 1) P a - = e B aac)

- p LRl o
<A ago sup / O s oy Koz a)dA ()

< Cf\lf\l"u = 11" 412 sup P4 k.0 (p, g5 a) < oo
B,P B,P a€D

a+2
For the other direction we use the fact that for each function f € B.? , the analytic function Cy(f) €

QK ,w(p,q). Then using the functions of Lemma 1.7 we get the following:

{1 i + 10 P |

= {sw [ i o o) @ + oo (9P <1 - \zﬁqwm(z)}

aeD wp(1 = [2])

> {sup / [|<f1 0 d) () +1(fo o¢>’<z>|}px<1 - |z|2>qwdmz>}

a€D JD wr(1 —[2])

> {sup [ 1)+ (6] <l @ra- e EEtem )|
QD a0 g

> oamp [ WO Gty o)

> C sgng,x,w(nq, )-

Hence Cy is bounded, then (3.1) holds. The proof is completed.

g+2
The composition operator Cy : B,” — Qk.w(p,q) is compact if and only if for every sequence
{fn}tnen C Qr,w(p,q) which is bounded in Qx . (p, ¢) norm, f, — 0,n — oo, uniformly on the compact
subset of the unit disk (where N be the set of all natural numbers), hence

ICs(fa)ll@s.p.a) — 0, 12— 00,

Now, we describe compactness in the following result.

Theorem 3.2. Let K(r) # 0 be a nonnegative, nondecreasing function on 0 < r < oo, w : (0,1] —
q+2

(0,00), and let ¢ be an analytic self-map of D. Then C : B.,? — QK0 (p,q) is compact if and only if

¢ € QK’w(pv q) and

lim sup Py, k. (p,q;a) = 0. (3.2)
r—1 a€D

at2
Proof. Let Cy: B.” — Qk,(p,q) be compact. This means that ¢ € Qx . (p,q).
Let
Up = {z:1¢(2)] >r, r€(0,1)}
and
U3={Zil o(z )\<T re(0,1)}

%"ifoz—q“e[o ) fulz
( M an

0,1). Sinee | full_szz

u

Let fn(z) =
consider o €

) = —i=s if @ € (0,1). Without loss of generality, we only
nd f,, ( ) — 0 as n — oo, locally uniformly on the unit disk,
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Boundedness of composition operators ... 53

then [|Cs(fn)llQk..,(n.q) — 0, m — oo. This means that for each r € (0,1) and for all & > 0, there exists
N € N such that if n > N, then

Nq+2

_ 2
st 2o [ 9P =y e e <o

ac wr(1—|2])

if we choose 7 so that (N9*2 pP(N=1) — 1  then
, K(1—lpa(2)?)
su 2P —|2)?) T/ LgA(2) < e 3.3
s [ 16 @P0 ) S ) (33)
Let now f with ||fn]] ¢+2 < 1. We consider the functions fi(z) = f(tz),¢t € (0,1). Then fi — f
B p

uniformly on compact subset of the unit disk as ¢ — 1 and the family (f:) is bounded on ||fn| q+2,
p

w

thus
[(fro¢) = (fo )| — 0.
Due to compactness of C'y we get that, for ¢ > 0 there is a ¢ € (0,1) such that

P 2vap—2 K (1 — “pa(z)‘z)
sup [ |Fp()P (1 - ) EE P A aa) < e
where
Fio(2)) = (709 (2) ~ (i 0 9)'(2)].
Thus, if we fix ¢, then
sup [ (o) @10 - ) 0B da)

¢ K(1 = [pa
wr(1—|2])

— =
n
=
o
N
U
o~
=~
N

IA

2 sup /U RGP - |2P)

aeD

+ 2 s [ ooy @ra -l EEEE B )

acD

2P ¢

1P / P 2 qK 1- a ?
R Y OIS e eI

IA

IN

e b 2 e ||l
ie.,
0 ) (P(1 — |22 K= l2a(2)*)
sup [ N e B Tesa e AL
<22 (Ut (1fi ), (3.4

where we have used 3.3. On the other hand, for each ||fn| ¢+2 < 1 and € > 0, there exists a ¢
B,.,P

w

depending on f, e, such that for r € [, 1),
AP 20 K (1 = |pa(2)[*)
s [ 10700/ P 2P 52 T aac) < (35)

q+2
Since Cy is compact, then it maps the unit ball of B,,” to a relatively compact subset of Qx . (p, q).
q+2

Thus for each ¢ > 0 there exists a finite collection of functions fi, fa, ..., fn in the unit ball of B,”
such that for each ||f|| ¢+2 <1, thereis k € {1,2,3,...,n} such that
B,P

sup [ 1RGP (1 22y B 10aE) 4 < o,
A

a€D wP(1 —|z])

*
e cas
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where,
Fir(¢(2)) = [(f 0 9)'(2) = (fr 0 0)'(2)].
Using also (3.5), we get for § = maxi<r<n 6(fk,€) and r € [4,1), that
donpey  zyar—2 KL= |9a(2)]%)
sup [ (oo @Pa— 2y H e aac) <.

Hence for any f, || f]| ¢+2 <1, combining the two relations as above we get that
p

w

sup /U 1(F o &) ()P (1 — |22y KA =12 @) gy ore

a€D wp(1 = [2])

Therefore, we get that (3.2) holds.
For the sufficiency we use that ¢ € Qk,w(p, q) and (3.2) holds. Let {fn}nen be a sequence of functions

in the unit ball of B, v , such that f, — 0 as n — oo, uniformly on the compact subsets of the unit
disk. Let also r € (0,1). Then

10 0l iy < 2" 1Fn(0(O))
127 sup /U (w0 (1~ [y KL 2B 4

aeD wp (1 = [2])

2 K(1—|pa(2)*)

—|—2psu/ o0 d) (2)|P(1 — |z2)er—2 22— el T g Ay

sup [ 10 08 P (L 272 S e i aa e
=2P(I1 + Iz + Is).

Since fr, — 0 as n — oo, locally uniformly on the unit disk, then I1 = |f,(¢(0))] goes to zero as n — oo

and for each € > 0 there is N € N such that for each n > N,

Bo= e[ oo e RO
< e lolg w0
We also observe that
< 1l e
B.,”

o (L WP fpu @)
<oup [ 6O S By KO adA),

Under the assumption that (3.2) holds, then for every n > N and for every ¢ > 0 there exists r1 such
that for every r > r1, Is < e. Thus if ¢ € Qk,.(p, q) we get
1o bl gy < 20+ l9l n +<)
< Ce

Combining the above, we get that ‘|C¢(fn)”%K’w(p,q)

proof of our theorem is therefore established. O

— 0 as n — 00, which proves compactness. The

Now we consider the composition operators from the Dirichlet space D into Qx . (p,q) spaces. Our
result is stated as follows.

Theorem 3.3. Let 2<p<o00o,-2<¢qg< o0 and K : (0,00) — (0,00). If ¢ is an analytic self-map
of the unit disk, then the composition operator Cy : D — QK w(p,q) is compact if and only if

Jm 1Copellan o = 0. (36)
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Boundedness of composition operators ... 55

Proof. Assume that Cy : D — Qkw(p,q) is compact. If limjg 1 |CoallQy.., (p.q) 7 O, then there
exist an ¢g > 0 and a subsequence ¢,,, such that

||C¢(§0an - an)HQKM(p,q) = ||C¢(@an)||QK,u(PvQ) 2 €0

forn=1,2,--- . Since Cy is compact, there is a subsequence {¢a,,, —an, } of {¢a, —a,} and a function
g in Qk,w(p,q) such that

im [[Co(Pan, — an)llox..ma =0

k—oo

q+2
Since g € Q,w(p,q) C B,? , we have for some ro € (0,1),

Cs(Pan, = ani)(2) = 9(2)]

1 )1 1+ |z

< Co(pmn, — im) = sl (1+ o .
any, ng QK,w(ra) QTO(WK(IOg%))% 1 |Z|

Thus, C¢(¢a, — an) — ¢ uniformly on compact subsets of D as k — oco. It means that we must have
g = 0 which contradicts that lim|q|~1 |Co@allQs.. (p.q) 7 O-
Conversely, let {fn} € D be a bounded sequence. Since f, € D C B, for z € D

1. 1+
|fn(2)] < S:pllfn||p<1 +ylog |z|>'

Hence, {fn} is a normal family. Thus, there is a subsequence { fn, }, which converges to f analytic on
D and both f,, — f and f,'“C — f’ uniformly on compact subsets of D. It is easy to show that f € D.
We replace f by Cy f, we remark that Cy is compact by showing

1Cofri = Cofllor,uwa) — 0 as |k[ — oo

We write
K(g(z,a))
P = (DIP(1 — |22 2= )
ICopelly ip =318 [ I(eno ) (P = o S ED da)
(1 — |a|2)p / P 2\q K(g(z,a))
= su ——— ¢ (2)|"(1 — |2]")! —F5dA(2
sup | |17a¢(z)|2p|¢( I = 12%) (L= T2) (2)
_ (1- |a|2)p P,q
= sgg/]; 7‘1 —Ew|2p (NK,W((j),w,a))dA(w).
Here,
- K(g(z,a))
p.q _ LONP=2(1 _ |.12\a )
NK,W(¢7w7a)_ Z ‘(:b (Z)‘ (1 ‘Zl ) wp(1—|z|)
z€¢p—1(w)
is the counting function. Thus (3.6) is equivalent to
lim sup/ M(Np’q (¢, w,a))dA(w) =0 (3.7)
lal=1aeA Ja [1—@w]2p ¥ ' '

Hence, for any € > 0 there exists a 6,0 < d < 1, such that for |a| > § and all a € D,

sup/ N (¢, w,a)dA(w) < e (1—la])”. (3.8)
aen Js(2(1-120),6)

The mean value property for analytic functions f,, and f’ yields that,

’ / o 4 ") (s 2
) =) = s [ i) = £ EDAAG)

2
Then by Jensen’s inequality (see [15, Theorem 3.3]), we have

’ ’ p 4 ’ 2) — /Z P P
i (w) = )" = iﬁ(1_|w‘)2/‘w‘<k‘w‘ [fi(2) = /()P dA(2)

2

IN

STl L ) = FEPAAG)
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Note that if |w — z| < 172“”‘7 then w € S(2(1 — |z|),0) and m < ﬁ (see [18]).
Then, for G1 = {z € D : |2/ > 1 — £} and G2 = {# € D : |z| < 1 — £} by Fubini’s theorem

(see [15, Theorem 8.8]), we deduce that

Sup/DIf;k(w)—f/(w)lp(N}';;‘i,(qé,w,a) )dA(w)

acD

< Comp [ [, O PG |NEL 60,0 dA)aAC)
< Csup /D W /;(2(17|z|),0) N (6w, a) dA(w)dA(2)
_ CSEB/GI Wémzm N2 (6, w, a) dA(w)dA(2)
+ CSEE/GZ W/s(g(lq),e) N (¢, w,a) dA(w)dA(z)

= C{Il +IQ},
For one hand, since f,,,f € D C B and 2 < p < 0o, we have

o (2) = P )P
L = S TR I NE“ dA(w)dA
I TR S VR0 240140
< Peswp [ £, - PP~ LAY dAE)
acEA G1
< Celf I 2 sup [ 100, ) - £GP dAG)
aeD JG,
< Celfar = FIIE 2 I fn — FID
< Cuellfo — FI5,

where C' and C are constants. On the other hand,

PR /Gz (1—1z)? /s<2(1—\z|>,e) Ni¢w(#w,a) dA(w)dA(z)
< Csup/ Ngi (¢, w,a) dA(w)/ |f7lzk(z)_f,(2)|pdA(z)
aeD JD Gs
< Ceg,

for n large enough since f;, (2) — f'(z) — 0 uniformly on G2. Therefore, for sufficiently large k, the
above discussion gives

1Cofn = Cofllge oo

= swp [ 09 ()= (Fo0) P - P S EE D dAG)

ac wP(1 — |2])
- sug/ [ (2) = £/ ()P (1= |2[*) N (¢, w, a) dA(w) < C'e.
ae A
It follows that Cy is a compact operator. Therefore, the proof is finished. O

Remark 3.4. It should be remarked that our Q. (p,q) classes are more general than many classes
of analytic functions. If w = 1, we obtain Qx (p, q) type spaces (cf. [20]) . If ¢ = p = 2, and w(t) = ¢,
we obtain Qk spaces as studied recently in [6,7,9,19,20,21] and others. If ¢ = p = 2, w(t) = ¢t and
K(t) = t?, we obtain @, spaces as studied in [2,3,22] and others. If w = 1 and K(t) = t°, then
QRk,.w = F(p,q,s) classes (cf. [1,23]).

Acknowledgments The authors express their thanks to the referees for suggesting corrections and
some modifications in the original draft of this paper for an improved presentation of the same.
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