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Abstract In this paper we consider the problem of creeping or the Stokes’ flow of a
viscous fluid past a pair of porous separated spheres with the problem formulation done in
the bipolar coordinate system. Stokesian approximation of the Navier-Stokes equations
for the Newtonian fluid model is taken to describe the fluid flow in the region exterior to
the porous spheres, while the classical Darcy’s law is for the flow inside the porous spheres.
An analytical solution to this problem is found wherein the expressions for stream func-
tion, pressure and velocity are derived in terms of the Legendre functions, the hyperbolic
trigonometric functions and the Gegenbauer functions. Also, the expression for the drag
experienced by each of the spheres is found and we carry out numerical evaluations to
compute the values of drag in the cases where the two spheres are of equal radii and the
case where they are of unequal radii. The plots of streamlines and pressure contours are
presented and discussed.

Key words Porous separated spheres, Bipolar, Gegenbauer functions, Legendre func-
tion, Stream function, Drag.
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1 Introduction

The problem of fluid flow past separated spheres or flow past two spheres is a classical problem that had
its origin at the beginning of the 19th century. Jeffery [1] found the solution to the Laplace equation in
the bipolar coordinate system while considering the flow of viscous fluid past separated spheres. Later,
Stimson and Jeffery [2] formulated an equivalent problem to the problem of viscous fluid flow past
separated spheres in the bipolar coordinate system, where the motion set up in the viscous fluid at
rest at infinity by two solid spheres moving with small constant and equal velocities was studied. They
determined the stream function as an infinite series in terms of the Legendre polynomials and hyperbolic
trigonometric functions and calculated the forces necessary to maintain the motion of the two spheres.
Dyuro [3] considered the potential flow of fluid past two solid spheres in the bipolar system and derived

∗ Communicated, edited and typeset in Latex by Lalit Mohan Upadhyaya (Editor-in-Chief).
Received March 29, 2019 / Revised February 18, 2020 / Accepted March 13, 2020. Online First Pub-
lished on June 30, 2020 at https://www.bpasjournals.com/.
†Corresponding author T.S.L. Radhika, E-mail: radhikatsl@hyderabad.bits-pilani.ac.in



Creeping flow of a viscous fluid ... 59

 

Fig. 1: Schematic diagram of flow past separated porous spheres in bipolar coordinates.

an expression for the velocity potential as an infinite series in associated Legendre polynomials (see, for
instance, [16]). Sneddon and Fulton [4] solved the problem of irrotational flow of a perfect fluid past two
spheres using two sets of spherical polar coordinates (one for each sphere) to solve the Laplace equation
governing the flow. Payne and Pell [5] studied Stokes flow for a class of axially symmetric bodies with
the problem of flow past solid separated spheres formulated in the peripolar coordinate system. They
derived an expression for the stream function in terms of the associated Legendre polynomials. Later,
many investigations were carried out on the problem of fluid flow past two or cluster of solid spheres
and analytical or numerical solutions are presented as in the references [6, 7, 8, 9, 10, 11, 12, 13, 14, 15].
Though the problem of flow past porous spheres has been studied in several works, to our knowledge,the
problem of flow past porous separated spheres was given sparse attention.

Thus, in the present work, we aim to solve the problem of viscous flow past porous separated spheres
using Stokesian approximation of the Navier-Stokes equation to describe the flow of fluid in the region
around (exterior to) the porous spheres while the classical Darcy’s law holds for the flow within the
spheres. We present analytical solutions to this problem wherein, we derive expressions for the stream
function and the pressure function in terms of the Legendre functions, the hyperbolic trigonometric
functions and the Gegenbauer functions. An analytical expression for the drag experienced by each
of the porous spheres. Further we carry out numerical computations to find the values of the drag
experienced by each of the spheres in two cases: where the spheres are of equal radii and when the
spheres are of unequal radii. We also plot and discuss the streamlines and pressure contours.

The paper is organized as follows: section 2 presents the mathematical formulation of the problem
in the bipolar coordinate system. The subsections 2.1 and 2.2 detail the solution in the region S0,
the region outside the porous spheres. The subsection 2.3 presents the solution in the porous regions
Si, i = 1, 2.. In section 3 we derive the equations to determine the arbitrary constants in the solution
using appropriate boundary conditions. Section 4 consists of the detailed working on the formula for
computing drag on each sphere. In subsection 4.1 we derive the expression for drag on each sphere and
tabulate their numerical values. Section 5 consists of the plots and discussions on streamlines and the
pressure function and the conclusions are summarized in the section 6.

2 Mathematical formulation of the problem

Consider the flow of a viscous fluid (with a uniform velocity U at infinity) past a pair of separated
porous spheres fixed in the flow domain, as shown in Fig. 1.

The bipolar system represented by the coordinates (ξ, η, φ), with (êξ, êη, êϕ) as base vectors and(hξ, hη, hφ)
as the corresponding scale factors are taken to describe the flow domain, where,

x =
a sinh ξ

cosh ξ − cos η
and r =

a sin η

cosh ξ − cos η
(2.1)
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hξ =
a

cosh ξ − cos η
; hη =

a

cosh ξ − cos η
; hφ =

a sin η

cosh ξ − cos η
(2.2)

for −∞ < ξ < ∞, 0 ≤ η < π.
Further, ξ = c > 0 where, c is a constant, represents the spheres on the positive x-axis with centre at a
distance of a coth c from the origin (along the x-axis) and with radius equal to a cosech c and ξ = c < 0
describes the spheres on the negative x-axis with their centres at a distance of −a coth c from the origin
(along the x-axis) and with radius equal to a cosech c.

Let
(

q̄(i), p(i)
)

denote the velocity and pressure in the region Si, i = 1, 2 whereS1 represents the region

inside the porous sphere ξ = ξ1 and S2, the region inside the porous sphere ξ = ξ2.
Equations governing the fluid flow in the region S0:

Let
(

q̄(0), p(0)
)

be the velocity vector and pressure in the regionS0. Assuming that the flow (in the

region S0) is axi-symmetric, we have q̄(0) = u(0) (ξ, η) êξ + v(0) (ξ, η) êη and the pressure as p(0) (ξ, η).
Further, considering the fluid to be incompressible and the flow as steady, the momentum equations
under Stokesian approximation take the form:

grad p(0) + µ curl
(

curl q̄(0)
)

= 0 (2.3)

Now, introducing the stream function through,

hηhφu(0) = −∂ψ(0)

∂η
; hξhφv(0) =

∂ψ(0)

∂ξ
(2.4)

we see that

curl ~q(0) =

{

1

hφ
E2ψ(0)

}

~eϕ (2.5)

curl curl ~q(0) =
1

hξhηhφ

{

hξ
∂

∂η

(

E2ψ(0)
)

~eξ − hη
∂

∂ξ

(

E2ψ(0)
)

~eη

}

(2.6)

in which the Stokes stream function operator E2 is given by

E2 =
hφ

hξhη

{

∂

∂ξ

(

hη

hξhφ

∂

∂ξ

)

+
∂

∂η

(

hξ

hηhφ

∂

∂η

)}

(2.7)

Using the expressions (2.5) and (2.6), (2.3) takes the form

1

hξ

∂p(0)

∂ξ
+

µ

hηhφ

∂

∂η

(

E2ψ(0)
)

= 0 (2.8)

1

hη

∂p(0)

∂η
− µ

hξhϕ

∂

∂ξ

(

E2ψ(0)
)

= 0 (2.9)

Eliminating p(0) from (2.8) and (2.9) gives

E4ψ(0) = 0 (2.10)

which is the equation governing the fluid flow in the region S0.
Equations governing the fluid flow in regions Si, i = 1, 2 :
In the regions Si, i = 1, 2, we consider the classical Darcy’s law given by

div q̄(i) = 0 (2.11)

q̄(i) = −k(i) grad p(i) (2.12)

where k(i),i = 1, 2 is the permeability of the porous medium Si.
Eliminating q̄(i)from equations (2.11) and (2.12), we get

∇2p(i) = 0, i = 1, 2 (2.13)

which is the governing equation in regions Si, i = 1, 2.
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Here ∇2 is the Laplacian operator given by

∇2 =
1

hξhηhφ

{

∂

∂ξ

(

hηhφ

hξ

∂

∂ξ

)

+
∂

∂η

(

hξhφ

hη

∂

∂η

)}

(2.14)

Boundary Conditions:
The determination of the relevant flow field variables ψ(0) and pi, i = 0, 1, 2 is subject to the following
boundary and regularity conditions:

(i) Continuity of the normal velocity component at interfaces:

u(i) = u(0) on Si, i = 1, 2 (2.15)

(ii) Tangential velocity component vanish at interfaces:

v(0) = 0 on Si, i = 1, 2 (2.16)

(iii) Continuity of pressure at interfaces:

p(i) = p(0) on Si, i = 1, 2 (2.17)

(iv) The velocities are regular on the axis, and far away from S0, the flow is a uniform stream which
means, at infinity

ψ(0) = −1

2
Ur2, i.e., lim

ξ→0
u(0) = −U, lim

ξ→0
v(0) = 0. (2.18)

2.1 Solution to the equations governing the flow in S0

To find the solution to the problem in the region S0 given by (2.10) we make use of its linear nature
and, thus, we have to solve

E2ψ(0) = f, (2.19)

where f is the solution to
E2f = 0. (2.20)

Solution to the equation (2.20):
(2.20) in bi-polar coordinate system is

cosh ξ − cos η

a2

(

a sin η
∂

∂ξ

(

cosh ξ − cos η

a sin η

∂

∂ξ

)

+
∂

∂η

(

(cosh ξ − cos η)
∂

∂η

))

f = 0 (2.21)

Following [2], let cos η = τ . Then equation (2.21) takes the form

cosh ξ − τ

a2

(

∂

∂ξ

(

(cosh ξ − τ)
∂

∂ξ

)

+
(

1 − τ2) ∂

∂τ

(

(cosh ξ − τ)
∂

∂τ

))

f = 0 (2.22)

Now, following the method of separation of variables, let us assume the solution to (2.22) as

f (ξ, τ) = (cosh ξ − τ)ng (ξ, τ) (2.23)

Substituting expression shown in (2.23) in equation (2.22) and after a straight forward calculation, we
get

f (ξ, τ) = (cosh ξ − τ)−1/2
∞

∑

n=1

(

An cosh

(

n +
1

2

)

ξ + Bn sinh

(

n +
1

2

)

ξ

)

ϑn+1 (τ) (2.24)

where An, Bn are arbitrary constants.
Using the expression(2.24) in (2.19), we get

cosh ξ − τ

a2

(

∂

∂ξ

(

(cosh ξ − τ)
∂

∂ξ

)

+
(

1 − τ2) ∂

∂τ

(

(cosh ξ − τ)
∂

∂τ

))

ψ(0)

= (cosh ξ − τ)−1/2
∞

∑

n=1

(

An cosh

(

n +
1

2

)

ξ + Bn sinh

(

n +
1

2

)

ξ

)

ϑn+1 (τ) .

(2.25)
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Again, using the method of separation of variables, we assume the solution of (2.25) in the form

ψ(0) (ξ, τ) = a2(cosh ξ − τ)−3/2
∞

∑

n=1

hn (ξ) ϑn+1 (τ) . (2.26)

Now, substitute the above expression in (2.25) and using the following relations in Gegenbauer func-
tions:

(

1 − x2) ϑ′
n+1 (x) = − (n + 1) xϑn+1 (x) + (n − 1) ϑn (x) , (2.27)

(n + 1) ϑn+1 (x) = (2n − 1) xϑn (x) − (n − 2) ϑn−1 (x) , (2.28)

and the orthogonality property of the Legendre polynomials, we get

ψ(0) (ξ, τ) = a2(cosh ξ − τ)−3/2×
∞

∑

n=1

(

Cn cosh

(

n − 1

2

)

ξ + Dn sinh

(

n − 1

2

)

ξ + En cosh

(

n +
3

2

)

ξ + Fn sinh

(

n +
3

2

)

ξ

)

ϑn+1 (τ),

(2.29)
where,

An = − (2n − 1) Cn + (2n + 3) En and Bn = − (2n − 1) Dn + (2n + 3) Fn. (2.30)

2.2 Expression for pressure in the region S0

We now derive the expression for the pressure function from (2.8) and (2.9). For this, we substitute
the expressions for the scale factors from (2.2) in (2.8) and (2.9) to get

∂p(0)

∂ξ
= −µ (cosh ξ − τ)

a

∂

∂τ

(

E2ψ(0)
)

(2.31)

∂p(0)

∂τ
= −µ (cosh ξ − τ)

(1 − τ2)

∂

∂ξ

(

E2ψ(0)
)

. (2.32)

Eliminating ψ(0) from these equations, we get

∂

∂ξ

(

(cosh ξ − τ)−1 ∂p(0)

∂ξ

)

+
∂

∂τ

(

(cosh ξ − τ)−1 (

1 − τ2) ∂p(0)

∂τ

)

= 0. (2.33)

Using the method of separation of variables, we get

p(0) (ξ, τ) = (cosh ξ − τ)1/2
∞

∑

n=0

(

Hn+1 cosh

(

n +
1

2

)

ξ + Gn+1 sinh

(

n +
1

2

)

ξ

)

Pn (τ) (2.34)

where Pn (τ)’s are the Legendre’s polynomials.

Substituting the expression for pressure from (2.34) in equation (2.31), we have

1

2
(cosh ξ − τ)−1/2 sinh ξ

∞
∑

n=0

(

Hn+1 cosh

(

n +
1

2

)

ξ + Gn+1 sinh

(

n +
1

2

)

ξ

)

Pn (τ) +

(cosh ξ − τ)1/2
∞

∑

n=0

(

n +
1

2

) (

Hn+1 sinh

(

n +
1

2

)

ξ + Gn+1 cosh

(

n +
1

2

)

ξ

)

Pn (τ)

=
µ

a













1

2
(cosh ξ − τ)−1/2

∞
∑

n=1

(

An cosh

(

n +
1

2

)

ξ + Bn sinh

(

n +
1

2

)

ξ

)

ϑn+1 (τ) +

(cosh ξ − τ)1/2
∞

∑

n=1

(

An cosh

(

n +
1

2

)

ξ + Bn sinh

(

n +
1

2

)

ξ

)

ϑ′
n+1 (τ)













(2.35)

Multiplying on both sides of (2.35) by (cosh ξ − τ)−1 and integrating the resulting equation with respect
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to τ between the limits -1 and 1 gives,

1

2
sinh ξ

∞
∑

n=0

(

Hn+1 cosh

(

n +
1

2

)

ξ + Gn+1 sinh

(

n +
1

2

)

ξ

)

1
∫

−1

Pn (τ)

(cosh ξ − τ)3/2
dτ+

∞
∑

n=0

(

n +
1

2

) (

Hn+1 sinh

(

n +
1

2

)

ξ + Gn+1 cosh

(

n +
1

2

)

ξ

)

1
∫

−1

Pn (τ)

(cosh ξ − τ)1/2
dτ

= − µ

2a





∞
∑

n=1

(

An cosh

(

n +
1

2

)

ξ + Bn sinh

(

n +
1

2

)

ξ

)

1
∫

−1

ϑn+1 (τ)

(cosh ξ − τ)3/2
dτ





(2.36)

Using the formulae given in expressions (2.37) and (2.38), the integrals in the above expression can be
evaluated to find the equation involving the constants Gn, Hn, An, Bn.

1
∫

−1

Pn (x)

(cosh ξ − x)1/2
dx =

2
√

2

2n + 1
e−(n+ 1

2
)|ξ| (2.37)

1
∫

−1

Pn (x)

(cosh ξ − x)3/2
dx =

2
√

2

sinh |ξ|e
−(n+ 1

2
)|ξ|. (2.38)

Substituting the expression for pressure from (2.34) in (2.32), we have

−1

2
(cosh ξ − τ)−1/2

∞
∑

n=0

(

Hn+1 cosh

(

n +
1

2

)

ξ + Gn+1 sinh

(

n +
1

2

)

ξ

)

Pn (τ) +

(cosh ξ − τ)1/2
∞

∑

n=1

(

Hn+1 cosh

(

n +
1

2

)

ξ + Gn+1 sinh

(

n +
1

2

)

ξ

)

P ′
n (τ)

= − µ

a (1 − τ2)













−1

2
(cosh ξ − τ)−1/2 sinh ξ

∞
∑

n=1

(

An cosh

(

n +
1

2

)

ξ + Bn sinh

(

n +
1

2

)

ξ

)

ϑn+1 (τ) +

(cosh ξ − τ)1/2
∞

∑

n=1

(

n +
1

2

) (

An sinh

(

n +
1

2

)

ξ + Bn cosh

(

n +
1

2

)

ξ

)

ϑn+1 (τ)













(2.39)
Multiplying on both sides of (2.39) by (cosh ξ − τ)−1 and integrating the resulting equation with respect
to τ between the limits -1 and 1 gives,

−
∞

∑

n=0

(

Hn+1 cosh

(

n +
1

2

)

ξ + Gn+1 sinh

(

n +
1

2

)

ξ

)

1
∫

−1

d
dτ

((

1 − τ2
)

Pn (τ)
)

(cosh ξ − τ)1/2
dτ+

∞
∑

n=1

(

Hn+1 cosh

(

n +
1

2

)

ξ + Gn+1 sinh

(

n +
1

2

)

ξ

)

1
∫

−1

(

1 − τ2
)

P ′
n (τ)

(cosh ξ − τ)1/2
dτ

= −µ

a



















−1

2
sinh ξ

∞
∑

n=1

(

An cosh

(

n +
1

2

)

ξ + Bn sinh

(

n +
1

2

)

ξ

)

1
∫

−1

ϑn+1 (τ)

(cosh ξ − τ)3/2
dτ+

∞
∑

n=1

(

n +
1

2

) (

An sinh

(

n +
1

2

)

ξ + Bn cosh

(

n +
1

2

)

ξ

)

1
∫

−1

ϑn+1 (τ)

(cosh ξ − τ)1/2
dτ



















(2.40)

Using the relations in (2.37), (2.38) and the recurrence relations in Legendre polynomials [16] (shown in
detail in section 4 of this paper) we can derive the expressions for Gn’s and Hn ’s in terms of An’s and
Bn’s. Again using the relations given in (2.30), these, in turn, can be written in terms of Cn, Dn, En

and Fn, thus the pressure function is completely determined.
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2.3 Solution to the equations governing the flow in regions Si, i = 1, 2
From equations (2.13) and (2.14), we have

∂

∂ξ

(

(cosh ξ − τ)−1 ∂p(i)

∂ξ

)

+
∂

∂τ

(

(cosh ξ − τ)−1 (

1 − τ2) ∂p(i)

∂τ

)

= 0, i = 1, 2. (2.41)

Its solution is

p(1) (ξ, τ) = (cosh ξ − τ)1/2
∞

∑

n=0

(

Ln+1 cosh

(

n +
1

2

)

ξ + Mn+1 sinh

(

n +
1

2

)

ξ

)

Pn (τ) , (2.42)

and

p(2) (ξ, τ) = (cosh ξ − τ)1/2
∞

∑

n=0

(

Rn+1 cosh

(

n +
1

2

)

ξ + Sn+1 sinh

(

n +
1

2

)

ξ

)

Pn (τ) (2.43)

where Ln, Mn, Rn, Sn are arbitrary constants.
Let us introduce stream function ψ(i), i = 1, 2 by defining relations similar to those given in (2.4). Now,
substituting the expression for the stream function and eliminating p(i) from (2.11) and (2.12), we get,

∂

∂ξ

(

(cosh ξ − µ)
∂ψ(i)

∂ξ

)

+
(

1 − µ2) ∂

∂µ

(

(cosh ξ − µ)
∂ψ(i)

∂µ

)

= 0. (2.44)

Using the method of separation of variables, we find its solution to be

ψ(i) = (cosh ξ − µ)−1/2
∞

∑

n=1

(Un cosh (n + 1/2) ξ + Vn sinh (n + 1/2) ξ) ϑn+1 (µ) . (2.45)

Substituting the expressions for ψ(i)and p(i), i = 1 in equation (2.11), we can express Un, Vn in terms
of Ln, Mn and thus the stream function in the region S1is determined. Similarly, the stream function
in the region S2 can also be determined.

3 Determination of Arbitrary constants

The eight sets of arbitrary constants Ln, Mn, Rn, Sn,Cn, Dn, En and Fn in the expressions (2.29), (2.36),
(2.37) are to be determined using the boundary conditions given in (2.15)–(2.18).

(i) Continuity of the normal velocity component at interfaces:
u(0) = u(1) on ξ = ξ1 gives,

∂ψ(0)

∂τ
= K(1)a(cosh ξ − µ)−1 ∂p(1)

∂ξ
on ξ = ξ1, (3.1)

Integrating the above expression with respect to τ between the limits -1 and 1 gives,

sinh ξ1

2

∞
∑

n=0

(

Ln+1 cosh

(

n +
1

2

)

ξ1 + Mn+1 sinh

(

n +
1

2

)

ξ1

)

e−(n+1/2)|ξ1|

sinh |ξ1|
+

∞
∑

n=0

(n + 1/2)

(

Ln+1 sinh

(

n +
1

2

)

ξ1 + Mn+1 cosh

(

n +
1

2

)

ξ1

)

e−(n+1/2)|ξ1|

(2n + 1)
= 0,

(3.2)

and u(0) = u(2) on ξ = ξ2 gives,

∂ψ(0)

∂τ
= K(2)a(cosh ξ − µ)−1 ∂p(2)

∂ξ
on ξ = ξ2 (3.3)

⇒ sinh ξ2

2

∞
∑

n=0

(

Rn+1 cosh

(

n +
1

2

)

ξ2 + Sn+1 sinh

(

n +
1

2

)

ξ2

)

e−(n+1/2)|ξ2|

sinh |ξ2|
+

∞
∑

n=0

(n + 1/2)

(

Rn+1 sinh

(

n +
1

2

)

ξ2 + Sn+1 cosh

(

n +
1

2

)

ξ2

)

e−(n+1/2)|ξ2|

(2n + 1)
= 0.

(3.4)
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(ii) Tangential velocity component vanishes at interfaces:

v(0) = 0 on ξ = ξ1 gives,
∂ψ(0)

∂ξ
= 0 on ξ = ξ1. (3.5)

i.e.,

−3

2

sinh ξ1

sinh |ξ1|

∞
∑

n=1

(

Cn cosh

(

n − 1

2

)

ξ1 + Dn sinh

(

n − 1

2

)

ξ1

+En cosh

(

n +
3

2

)

ξ1 + Fn sinh

(

n +
3

2

)

ξ1

) (

e−(n−1/2)|ξ1| − e−(n+3/2)|ξ1|

2n + 1

)

+

∞
∑

n=1

1

2n + 1

((

n − 1

2

)

Cn sinh

(

n − 1

2

)

ξ1 +

(

n − 1

2

)

Dn cosh

(

n − 1

2

)

ξ1

+

(

n +
3

2

)

En sinh

(

n +
3

2

)

ξ1 +

(

n +
3

2

)

Fn cosh

(

n +
3

2

)

ξ1

)

×
(

e−(n−1/2)|ξ1|

2n − 1
− e−(n+3/2)|ξ1|

2n + 3

)

= 0,

(3.6)

Furthermore,

v(0) = 0 on ξ = ξ2 gives
∂ψ(0)

∂ξ
= 0 on ξ = ξ2. (3.7)

−3

2

sinh ξ2

sinh |ξ2|

∞
∑

n=1

(

Cn cosh

(

n − 1

2

)

ξ2 + Dn sinh

(

n − 1

2

)

ξ2

+En cosh

(

n +
3

2

)

ξ2 + Fn sinh

(

n +
3

2

)

ξ2

) (

e−(n−1/2)|ξ2| − e−(n+3/2)|ξ2|

2n + 1

)

+
∞

∑

n=1

1

2n + 1

((

n − 1

2

)

Cn sinh

(

n − 1

2

)

ξ2 +

(

n − 1

2

)

Dn cosh

(

n − 1

2

)

ξ2

+

(

n +
3

2

)

En sinh

(

n +
3

2

)

ξ2 +

(

n +
3

2

)

Fn cosh

(

n +
3

2

)

ξ2

)

×
(

e−(n−1/2)|ξ2|

2n − 1
− e−(n+3/2)|ξ2|

2n + 3

)

= 0.

(3.8)

(iii) Continuity of pressure at interfaces: p(1) = p(0) on ξ = ξ1 gives

(cosh ξ1 − τ)1/2
∞

∑

n=0

(

Ln+1 cosh

(

n +
1

2

)

ξ1 + Mn+1 sinh

(

n +
1

2

)

ξ1

)

Pn (τ)

= (cosh ξ1 − τ)1/2
∞

∑

n=0

(

Hn+1 cosh

(

n +
1

2

)

ξ1 + Gn+1 sinh

(

n +
1

2

)

ξ1

)

Pn (τ) ,

(3.9)

and p(2) = p(0) on ξ = ξ2 gives

(cosh ξ2 − τ)1/2
∞

∑

n=0

(

Rn+1 cosh

(

n +
1

2

)

ξ2 + Sn+1 sinh

(

n +
1

2

)

ξ2

)

Pn (τ)

= (cosh ξ2 − τ)1/2
∞

∑

n=0

(

Hn+1 cosh

(

n +
1

2

)

ξ2 + Gn+1 sinh

(

n +
1

2

)

ξ2

)

Pn (τ) .

(3.10)

(iv) Regularity condition at Infinity:

lim
ξ→0

u(0) = −U

⇒ 3

2
(1 − τ)−1/2

∞
∑

n=1

(Cn + En) ϑn+1 (τ) − (1 − τ)1/2
∞

∑

n=1

(Cn + En) ϑ′
n+1 (τ) = −U, (3.11)
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lim
ξ→0

v(0) = 0 ⇒
∞

∑

n=1

((

n − 1

2

)

Dn +

(

n +
3

2

)

Fn

)

ϑn+1 (τ) = 0. (3.12)

Let us introduce the non-dimensional quantities as

ψ∗ = ψ/(Ua2); p(0) = p(0)∗µU/a; p(i) = p(i)∗µU/a, i = 0, 1, 2; and k(i)∗ =
k(i)a

µ
. (3.13)

We see that the above sets of equations to determine the arbitrary constants are infinite series in terms
of infinite sets of constants. Solving these equations for the constants is the most crucial and a complex
task. We handle the complexity in the following way - for this, let us recall the definition of equality
of two infinite series: we say that two infinite series are equal if and only if their corresponding partial
sums are equal.
Thus, equating the sum to first one term of the two series (here, we take the right-hand side of the above
equations as the zero series) we get eight equations in eight unknowns L1, M1, R1, S1,C1, D1, E1and
F1 that can be readily solved for these unknowns. Now, equating the sum to first two terms of
the two series, we get eight equations in eight unknowns, namely, L1, M1, R1, S1,C1, D1, E1,F1 and
L2, M2, R2, S2,C2, D2, E2,F2. Since the values L1, M1, R1, S1,C1, D1, E1,F1 are known, we substitute
these values in these equation and get eight equations in eight unknowns that can be solved for
Ln, Mn, Rn, Sn,Cn, Dn, En,Fn for n = 2. We then equate the sum to first three terms of the two
series to get the values of Ln, Mn, Rn, Sn,Cn, Dn, En,Fn for n = 3. This process continues until the
difference in the values of the expressions on both the sides of the equations (3.1) – (3.12) is up to a
desired degree of accuracy. Thus, knowing the values of the infinite sets of arbitrary constants, we use
them to derive analytical expressions for the non-dimensional stream and the pressure functions in all
the three regions. In our study, we computed the values of Ln, Mn, Rn, Sn,Cn, Dn, En,Fn for n = 1, 2, 3
and the difference is in the order 10−9 to 10−31.
The reader may note that, in the latter part of the text, ‘*’ is dropped from the notations of stream
function and pressure function, but still they continue to represent the non-dimensional quantities.

4 Determination of drag

In view of the assumption that the flow is axisymmetric, the stress vector ~t on the boundary of a sphere
is given by

t̄ = tξξ êξ + tξη êη. (4.1)

We have,
tξξ = −p + 2µeξξ, (4.2)

where,
eξξ = ∂

∂ξ
(u/hξ) + 1

hξ
q̄.∇hξ,

= 1
a

(

−v
√

1 − τ2 + (coshξ − τ) ∂u
∂ξ

)

,
(4.3)

and
tξη = 2µeξη, (4.4)

where,

eξη = 1
2

(

1
hξ

(

∂v
∂ξ

− u
hη

∂hξ

∂η

)

+ 1
hη

(

∂u
∂µ

− v
hξ

∂hη

∂ξ

))

= 1
2a

(

u
√

1 − τ2 + v sinh ξ + (cosh ξ − τ)
(

∂u
∂η

+ ∂v
∂ξ

))

,
(4.5)

Now, the component of the stress vector in the direction of the axis of symmetry is

(stress)axial = t̄.∇x

=
1

cosh−τ

(

(1 − τ cosh ξ) tξξ −
(

√

1 − τ2 sinhξ
)

tξη

)

.
(4.6)

Thus, the drag D experienced by each sphere can be written in the form

D = 2πa2

1
∫

−1

(stress)axial

(cosh ξ − τ)2
dτ. (4.7)
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4.1 Drag on the sphere ξ = ξ1

Using the expressions for pressure given in (2.36), we find the velocity components using the relation
given in (2.12). We, then compute the strain components using the following formulae

eξξ|ξ=ξ1
=

(cosh ξ1 − τ)

a

∂u(1)

∂ξ

∣

∣

∣

∣

ξ=ξ1

, (4.8)

and

eξη|ξ=ξ1
=

1

2

(

u(1)
√

1 − τ2 + + (cosh ξ1 − τ)

(

√

1 − τ2
∂u(1)

∂τ
+

∂v(1)

∂ξ

))∣

∣

∣

∣

ξ=ξ1

. (4.9)

Now, the stress components are to be evaluated by using the expressions given in (4.2) and (4.4).

For this, let us denote

I1 (n) =

1
∫

−1

Pn (x)

(cosh ξ − x)1/2
dx =

2
√

2

2n + 1
e−(n+1/2)|ξ|, (4.10)

I2 (n) =

1
∫

−1

Pn (x)

(cosh ξ − x)3/2
dx =

2
√

2

sinh |ξ|e
−(n+1/2)|ξ|, (4.11)

I3 (n) =

1
∫

−1

Pn (x)

(cosh ξ − x)5/2
dx =

4
√

2

3(sinh |ξ|)2
(

2n + 1

2
+ coth |ξ|

)

e−(n+1/2)|ξ|. (4.12)

Then, we have

I4 (n) =

1
∫

−1

(

1 − x2
)

Pn (x)

(cosh ξ − x)3/2
dx =

2

2n + 1
(n (n − 1) I1 (n − 1) − (n + 1) (n + 2) I1 (n + 1)), (4.13)

I5 (n) =

1
∫

−1

(

1 − x2
)

Pn (x)

(cosh ξ − x)5/2
dx =

2

3 (2n + 1)
(n (n − 1) I2 (n − 1) − (n + 1) (n + 2) I2 (n + 1)), (4.14)

I6 (n) =

1
∫

−1

xPn (x)

(cosh ξ − x)1/2
dx =

(n + 1) I1 (n + 1) + nI1 (n − 1)

2n + 1
, (4.15)

I7 (n) =

1
∫

−1

xPn (x)

(cosh ξ − x)3/2
dx =

(n + 1) I2 (n + 1) + nI2 (n − 1)

2n + 1
, (4.16)

I8 (n) =

1
∫

−1

xPn (x)

(cosh ξ − x)5/2
dx =

(n + 1) I3 (n + 1) + nI3 (n − 1)

2n + 1
, (4.17)

I9 (n) =

1
∫

−1

(

1 − x2
)

P ′
n (x)

(cosh ξ − x)1/2
dx =

n (n + 1)

2n + 1
(I1 (n − 1) − I1 (n + 1)), (4.18)

I10 (n) =

1
∫

−1

(

1 − x2
)

P ′
n (x)

(cosh ξ − x)3/2
dx =

n (n + 1)

2n + 1
(I2 (n − 1) − I2 (n + 1)), (4.19)

I11 (n) =

1
∫

−1

(

1 − x2
)

P ′
n (x)

(cosh ξ − x)5/2
dx =

n (n + 1)

2n + 1
(I3 (n − 1) − I3 (n + 1)). (4.20)

 

Bulletin of Pure and Applied Sciences Section E - Mathematics & Statistics, Vol. 39 E, No. 1, January-June, 2020



68 T.S.L. Radhika, T. Raja Rani and Divy Dwivedi

Table 1: Values of the non-dimensional drag in different cases.

Non-dimensional Drag

k(1) = k(2) =0.01, 0.005

Case-1 ξ1 = 1 -108853 -112085

Spheres are of

equal radius

ξ2 = −1 -6956.82 -6355.21

Case-2 ξ1 = 2 739.12 207.9

Spheres are of

equal radius

ξ2 = −2 -166.361 -105.075

Case-3 ξ1 = 1 -1923.78 -2702.24

Spheres are of

unequal radius

ξ2 = −2 -213.48 -134.836

Case-4 ξ1 = 2 -1.535 -0.4319

Spheres are of

unequal radius

ξ2 = −1 3.011 2.561

Using the above expressions, the non-dimensional drag (shown in expression (4.7)) on the sphere ξ = ξ1

given by D∗ = D/µaU simplifies to

D = 2π

∞
∑

n=0
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
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










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









{

1/4(sinh ξ1)
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}

(Ln+1 cosh (n + 1/2) ξ1
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(4.21)
It may be noted here that in the above expression all the integrals all evaluated for ξ = ξ1.
Similarly, the expression for the drag on the sphere ξ = ξ2 can be derived. In the Table 1 we present
the values of the non-dimensional drag computed in different cases.
Observations:

1. In case the two spheres are of equal radius, (Case 1 and Case 2 mentioned above in the Table 1),
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Fig. 2: Pressure contours in the xy plane when ξ1 = 1, ξ2 = −1.

the sphere placed to the negative x-axis (ξ = ξ2) experiences lesser drag (in magnitude) than the
one placed (ξ = ξ1) on the positive x-axis.

2. When the radius of the sphere placed on the positive x-axis is small (Case 3 and Case 4 mentioned
above in the Table 1), the drag experienced by the two spheres are of opposite signs indicating an
attractive force between them. We find this result to be consistent with the observations made by
Kotsev in his work [17] on the viscous flow around spherical particles in different arrangements.

5 Plots of the streamlines and the pressure function

Case(I): The two spheres are of equal radii:
The figures Fig. 2 and Fig. 3 – Fig. 6 respectively present the pressure contours and streamlines in
the case of equal spheres with ξ1 = 1,ξ2 = −1. The figures Fig. 7 – Fig. 11 depict the same when
ξ1 = 2,ξ2 = −2.
From Fig. 2 and Fig. 7 we observe that the pressure in the region in between the larger spheres is
greater than that of smaller spheres. It could be because the drag experienced by the smaller spheres
is lesser than the drag experienced by the larger spheres, as seen from Table 1 presented in section 4
above. Further, we see from (2.13) that the pressure function does not depend on the permeability of
the porous region and hence the pressure contours are presented as functions of the radii of the spheres.
The figures Fig. 3 – Fig. 6 and Fig. 8 – Fig. 11 depict the streamline for different values of the
permeability parameter in case of equal spheres. The figures Fig. 3, Fig. 4, Fig. 8 and Fig. 9 show the
streamlines in the case where the two spheres are of different permeability. We see that the streamlines
are dense near the sphere with greater permeability.
The figures Fig. 5, Fig. 6, Fig. 10 and Fig. 11 show the streamline pattern in the case when two
spheres have equal permeability. Here again, the streamlines are dense in the case when both the
spheres have greater permeability.
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Fig. 3: Plot of streamlines for k(1) =

0.01, k(2) = 0.005 .
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Fig. 4: Plot of streamlines for k(1) =

0.005, k(2) = 0.01.
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Fig. 5: Plot of streamlines for k(1) =

0.005, k(2) = 0.005 .
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Fig. 6: Plot of streamlines for k(1) =

0.01, k(2) = 0.01.
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Fig. 7: Pressure contours in the xy plane when ξ1 = 2, ξ2 = −2.
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Fig. 8: Plot of streamlines for k(1) =

0.01, k(2) = 0.005 .
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Fig. 9: Plot of streamlines for k(1) =

0.005, k(2) = 0.01.
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Fig. 10: Plot of streamlines for k(1) =

0.005, k(2) = 0.005 .
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Fig. 11: Plot of streamlines for k(1) =

0.01, k(2) = 0.01.

Case(II): The spheres are of unequal radii:

The figures Fig. 12 and Fig. 13 – Fig. 16 depict respectively, the pressure contours and the streamlines
in the case where the sphere to the right of the origin is larger than the one towards the other side of
the origin.

Further, the figures Fig. 17 and Fig. 18 – Fig. 21 depict respectively, the pressure contours and the
streamlines in the case where the sphere to the left of the origin is larger than the one towards the
other side of the origin.

We see from the plots of the pressure contours in the figures Fig. 12 and Fig. 17 that the pressure
in the region in between the two spheres is more when the smaller sphere is towards the right of the
larger sphere. It is because of the lesser drag experienced by the smaller sphere.

6 Conclusion

In this work, we presented the analytical solution to the problem of Stokes flow of a viscous fluid past
a pair of separated porous spheres. The flow within the porous spheres is taken to obey Darcy’s law,
and we derived analytical expressions for the drag experienced by each of the spheres and computed
its values for some assumed values of the parameters. We also presented and discussed the pressure
contours and streamlines in the cases when the two spheres are of equal radii and when they have
unequal radii.
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Fig. 12: Pressure contours in the xy plane when ξ1 = 1, ξ2 =

−2.
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Fig. 13: Plot of streamlines for k(1) =

0.01, k(2) = 0.005 .
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Fig. 14: Plot of streamlines for k(1) =

0.005, k(2) = 0.01.
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Fig. 15: Plot of streamlines for k(1) =

0.005, k(2) = 0.005 .
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Fig. 16: Plot of streamlines for k(1) =

0.01, k(2) = 0.01.

 

Fig. 17: Pressure contours in the xy plane when ξ1 = 2, ξ2 =

−1.
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Fig. 18: Plot of streamlines for k(1) =

0.01, k(2) = 0.005 .
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Fig. 19: Plot of streamlines for k(1) =

0.005, k(2) = 0.01.
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Fig. 20: Plot of streamlines for k(1) =

0.005, k(2) = 0.005 .
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Fig. 21: Plot of streamlines for k(1) =

0.01, k(2) = 0.01.
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