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Abstract For the items like trendy goods, mobile phones and such others, it is examined
that the demand rate is of trapezoidal type. The aim of this study is to present optimal
production policy for deteriorating items, when the demand of an item is trapezoidal
type. Rate of deterioration is assumed to be constant and rate of production depends
upon demand rate. Shortages are not allowed. Mathematical formulation is derived in
order to minimize the total cost of an inventory system. An easy to use algorithm is
presented to decide an optimal production policy.
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Minimizing Total Cost.

2010 Mathematics Subject Classification 90B05.

1 Introduction

In recent competitive market, it is observed that for items like fancy/seasonal/trendy goods, the demand
of an item increases with respect to time over a period of time. Thereafter, the item consumed by level
demand for a short period, followed by a decrease in demand with time again. Resh et al. [19] and
Donaldson [9] made first attempts to integrate the linear trend in demand for an inventory system. For
the first time, Hill [15] considered ramp type demand pattern to develop an optimal ordering policy. In
case of ramp type demand rate, the rate increases linearly with time and thereafter it stabilizes. Such
demand pattern is observed in newly introduced consumable items in the market. Many researchers
have studied models with ramp type demand. The inventory models with the ramp type demand
are studied by Wu et al. [28,29], Wu and Ouyang [27], Wu [26], Giri et al. [11], Deng [7], Chen et
al. [2], Deng et al. [8], Cheng and Wang [3], He et al. [14], Skouri et al. [23]. Moreover, the goods in
the inventory system always retain their physical quality is not true in common. In current business
environment, effect of deterioration is expected to be incorporated in an inventory system. The process
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which depletes the present value or usefulness of an item and does not allow their original use, due to
degradation, spoilage, evaporation etc. is known as deterioration. First of all Ghare and Schrader [10]
incorporated deterioration in an inventory system. Covert and Philip [5] used Weibull distribution
to extend the idea of Ghare and Schrader [10]. Dave and Patel [6], Goyal [13], Raafat [18], Shah and
Shah [21], Goyal and Giri [12], Manna and Chaudhri [17], Skouri et al. [24], Ruxin et al. [20] and Bakker
et al. [1] cite an up to date review on deteriorating inventory system. Cheng and Wang [3] extended this
idea from ramp type demand to trapezoidal type demand. Cheng et al [4] integrated shortages with
partial backlogging and deterioration in an inventory system to extend the idea of Cheng and Wang [3].
Recent articles on trapezoidal type demand by Shukla and Suthar [22], Wu et. al. [30,31], Vandana
and Shrivastava [25]. Manna et al. [16] present production inventory system for deteriorating items
having ramp type demand. The demand rate increases with time up to a certain point of time and
then stabilizes at constant level. Models were formulated without shortages and with two assumptions
that: a) the demand rate is stabilized after the production stops and before the time when inventory
level reaches to zero and b) the deterioration is constant.

Our present work is an extension of the work of Manna et al. [16] with the assumption that the
production process stops before the inventory level reaches to zero and in one of the three situations:
1) before the demand rate becomes constant, 2) when the demand rate is constant and 3) after the
demand rate is constant. In this paper, section 1 introduces the article in brief. Assumptions and
notations are presented in section 2. Section 3 deals with the mathematical formulation for each of the
three cases along with the computational algorithm and the conclusions are described in section 4.

2 Assumptions and notations

To formulate the proposed inventory system mathematically, the following assumptions are made and
the notations to be used by us in this paper are also explained below:

1. The inventory system deals with a single item. Rate of replenishment rate is assumed to be finite
and lead time is considered to be zero or negligible. The length of planning horizon is infinite.
Inventory system does not possess shortages.

2. The function @ (t) represents level of an stock at any instant of time ¢ during [0, 7], where T is
length of ordering cycle.

a1 +bit ;5 0<t< )\
3. The demand is assumed to be trapezoidal type, say R (t), were R (t) = ar+bid ; M <t< A,
as — bot o e <t<T

where a1, a2,b1,b2 are scaling parameters for rate of demand. During [0, A\1] demand increases
with respect to time, then it stabilizes during [A1, A2] and thereafter it decreases as ¢ increases
during [A2, T1.

4. The level of stock deteriorates with a constant rate say 6 (0 < 6 < 1) during the ordering cycle
[0,T]. Again, deteriorated stock is neither repaired nor replaced during [0, 7.

5. Inventory system is assumed as production inventory system, where initial stock level is assumed
to be zero at time ¢t = 0. Production process starts at ¢ = 0 and continues up to time ¢t = ¢;. At
time ¢ = ¢1, stock level attains its maximum say S.

6. The unit production cost of an item is defined as C, = a1 (R(t))””7, where v > 0 and v #
2(Manna et. al [16]). a1 > 0 as Cp, > 0 and R () is non — negative. As demand increases unit
production cost will decrease, which validates that Cp and R (¢) are in inverse proportion.

7. We consider C}, is the holding cost / unit; Cyq is the cost due to deterioration / unit; C (t1,7) is
an average cost of an inventory system.

3 Mathematical formulation and computational algorithm

As, Q (t) represents level of stock at any instant of time ¢ (say) during [0,7]. Initially level of stock is
assumed to be zero at t = 0, at the same time production takes place and continues up to time ¢t = t;
with maximum stock level say S. Hence, during [0, ¢1]
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dqQ [ B-1)R(({) ; 0<t<t
E*QQ“)‘{ “R(t) ; t<t<T

Now depending upon the value of ¢; the following three different cases may arise:
Case 1: 0 <A1 <A <t13 <T,Case2: 0 <A\ <t1 < XA<TandCase3: 0<t; <A\ <A <T.
Hence, we compute below separately for all the cases for the proposed production inventory system.
Casel:OS)qS}\zStlST

At timet = 0, the production starts with zero stock level and stops at time ¢ = ¢;. Using (3.1)

(3.1)

B-=1D(ar1+bit) ; 0<t<)\
dQ B=1)(a1+b1A1) ; M <t< A
% = 2
i TP B a—tat) ; de<t<h (32)
—(az—bgt) 3 t1§t§T
Using initial condition @ (0) = 0, we solve
dQ
Eﬂ-@@(t):(ﬁ—l)(mﬂ-blt); 0<t< )\ (3.3)
Its solution is o o o ) ot
(B—=1) (" b1t0 + €*ar10 — e""by —a10 + b1) e
Q- =1 - (3.4)
Using continuity of Q (t) at t = A1 we solve
dq
E—f—@@(t) = (5—1) (a1+b1)\1); A <t< ) (3.5)
which results in
( e b1 N0 — a1 80 + €T bi X0 + b1 B + %t ar0 oot
+a180 — e 1by —a10 — b1 B+ by
Q) = & (3.6)
Similarly, using continuity of @ (t) at ¢ = A2 we solve,
dQ
E =+ HQ (t) = (ﬂ — 1) (az — bzt) ; Ao <t<t (37)
which gives
€221 810 + ?*2b28X20 — e”' b2 Bt0 + €72 a1 B0 — €2 a2 B0
Q) = 1 g | —e"2b1Ai0 — €¥2b2 200 + %P aa B0 + €”'batd — 22160 + € 2 az0 (3.8)
Tz | —e2h,8 — % a20 + €%t baB — P1b1 B — a1 B0 + €"*2by — €%hy )
+e1by +a10+ b8 — by
Moreover, at time ¢ = t1, level of stock is maximum, using Q (t1) = S we solve,
dq
EJr@Q(t):f(agszt); t1<t<T (3.9)
which yields
1 (et gp? — o001yt 0 4 011 g,0
_ 1 1
Q (t) 62 ( +b2t0 + eie(titl)bg — a20 — by ) (3.10)
Using the boundary condition @ (T") = 0 in (3.10), we evaluate the maximum level of stock as under:
S = _eiz (b2t19 + a6 + by T 1) 4 by — (a2 + bz)e“’”*fl)) (3.11)

By substituting S in (3.10), we have Q (t) as under, during [¢1,7]

Q) = _eiz (e“T*”sze T 000 — byt — " T Dby + asf + bg) (3.12)



Production inventory system ... 543

Using (3.4), (3.6), (3.8) and (3.12), the total inventory during [0,77] is ,

T A1 A2
TIlz/ Q (1) dt:/ Q(t) dt + Q(t) dt+ Q dt+/ Q(t (3.13)
0 0 A1 A2
where,
\ 1 blﬁ)\%HQ + 2a15)\102 — bl)\%GQ — 2a192)\1
Q (t) dt = — —2b1 8160 — 2a1 80 + 2b1 X160 + 2a16 + 2b1 5 — 2b1

+e7%1 (20180 — 2010 — 23by + 2b1)

1 <b16A1292 — b1BAN20% + a1 BA107 — a1 B8N0 — b1 A1207 + b1 N0 >

03 \ —a1 M 102 + a1 X20% + b1 3 + a180e O — by Be?M17A2) _ o m024 89 py
1
—o (-04(9676)\1 — b Be M 4 brefPi=22) 4 =0h2g g4 e=P2p 8 4 e Mp, 679A2b1)

/:Q(t) dt =

—2b3 + 2a28X20” — 24251107 — 2028110 — b2 SN0 + boSt1°67
—2b1BA10 + 2b28 + 2010 — 2a26 — 2a1 80 + 2a280 + 2b1A10 — 2a2 120>
+2a2t10° + 2bat10 + baXo>0% — bot120?
2e%1p, — 260 itty, 4 902, 9 2710, 8 + 2efMtA)p, 2924, 86
Le—f’(kz'ﬂl) 269t1a10 + 209t a180 — 2¢202 a0 + 2629)‘2a1/3’0 — 9e202 ba A28
263 —2e2%2p; \10 4 2292by — 267220, 0 + 2622 406 — 2627220, 3
—2e?MFA2p 34 9020%2p, BN, 0 + 267972 by SN0 — 2e2722b) + 262220, 3

203

T 1 [ T?020°% — bot30% — 2Ta20° + 2a260%t, + 2bot16 — 27T~ Thy0
Q) dt = 5= 0(T—t1) 0(T—t1)
20 —2a20 + 2e as0 — 2by + 2e bo

Now, total number of deteriorated units during [0, 7] is given by,
DI, =Production in [0, \;]+ Production in [A1,A\2] + Production in [A2,¢1] — Demand in [0, A1] —
Demand in [A1, A2] — Demand in [A2, 7]

_gf (a1 + bit) dt—i—ﬂf a1+b1>\1 dt+@f“ (az — bat) dt
_fO a1+b1t dt — Al (a1+bl)\1 f)\ as — b2t dt

—%ﬁbl)\% + ﬁbl)q)\z —+ 50,1/\2 + %ﬁbQ)\g — %ﬂbgt% — ﬂaz)\g

+ﬂa2t1 + %b1)\% — b1 A1 A2 — a1 + %T2b2 — %bg)\% —a2T + as 2 (3’14)
Cost of production during [0, ¢1] is given by,
ty
PC, = / Bai (R (t))(l—w) du
0
A1 Ao t1
= Bon (ar + bru)' ™7 du + Bai (a1 +bix)" ™" du + Ban (az — bou) ' ™" du
0 A1 A2
—aY i _ v _ _ Y
= Bax ( o+ (le\yl +a) + (bid1 + a1)7_1 (A2 — A1) + (Zbada + a2)b 5 (a2 = Tb2) > (3.15)
1 2

Case 2: 0< A1 <t1 <A <T
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In this case, from (3.1),

(/871)(a1+b1t) ; 0<t<\
aqQ _ (B—=1) (a1 +biA1) ; M <t<t
dt +0Q () = — (a1 + bi1) ;o 1 <t< A (3.16)
7(asz2t) 5 )\QStST
We solve differential equation given below, using initial condition @ (0) = 0,
aQ
E‘F@Q(t) = (ﬂ—l) (a1—|—b1t); Oﬁtg)q (317)
whose solution is B 1)
Q) = (me Faif— b — (a6 — bl)e*‘”) (3.18)
We use continuity of @ () at ¢ = A1 to solve the differential equation,
dQ
E—H%)(t) = (ﬂ—l) ((11 +b1)\1); M <t<t (3.19)

which gives

_ 1 biBMO — a1 B0+ bi i + b1 Be” M T + a10 + a1 B0e” "
Q)= (P (3.20)

Now at t = ¢1 the production process stops and the maximum level of stock is S, i.e. Q (t1) = S. We

solve,
d
7?+0Q(t) :—(a1 +b1)\1); t1 <t <X (3.21)

for which we have
Q) = % (e_g(t_tl)SG +e 0T A e g —hy N — a1> (3.22)

Using continuity of Q (t) at ¢ = A2, we solve the differential equation,

%—&—GQ(t):—(aQ—bgt); Mo SEST (3.23)

which yields

1 ee(Azit)bl)qe + 690\270[)2)\20 — 69<t17t)592 — 69<t17t)b1)\19
Qt)=-5 +efP27 g9 — P2 q,0 — P11 g 0 — byt — P27 0p, (3.24)
+a26 + b

Using the boundary condition @ (T") = 0 in (3.24), we evaluate the maximum level of stock as under:

- 1 bid10e T =22 4 by xofe=0T=22) —py 00T 1) 4 gy he=0(T—22) (3.25
T 02 0T—t) | —a20e T2 _ 10070 T ) _ pyTO — boe T2 4 aof + by 25)

By substituting S in (3.22) and (3.24), we have Q (¢) as under,

Q)= -+ T 0Thy0 — P20y 0 — /P27 Dby 000 — T a0 (3.26)
T2 —69<)\27t>a19 + 690\270@29 + b1 A0 — 69(T7t>bz + ego\zit)bg + a0 ’
Q (t) = —9% (69(T7t>T529 — 69(T7t>a29 — bgt@ — 69<T7t)b2 + CLQG =+ bz) (327)

Using (3.18), (3.20), (3.26) and (3.27),
The total inventory during [0, 7] is ,

T A1 t1 Ao T
TI, = / Q(t) dt = Q(t) dt + Q(t) dt+ Q) dt+ [ Q(t) dt (3.28)
0 A2

0 A t
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where,
A1 1 b1ﬂ)\%02 + 204,3)\192 — b1>\%02 — 2(11A192 — 2b1,3)\19
/ Q (t) dt = ﬁ —2a180 4+ 2b1 \10 + 20160 + 2b15 + 2041/396_9A1 — 2b1—
0 2a10e 1 — 2b1 Be™ M 4 2h1 e M
blﬂ)\%QQ — blﬁ)\lt102 —+ alﬁ/\192 — a1,8t162 — b1)\%02
/tl QW di= -1 +biA1t10% — a1 A10 + a1t10° + b1 B + a1 fe” M — by Bt i)
A 03 —a150679t1 — by —a10e 1 — b15679>\1 + b1ee(A17t1) + a10e M

+b15670t1 + b1€70A1 _ b1€79t1

bl)\1/\292 — b1)\1t1(92 + al)\292 — a1t192 + b1 A10 + baol — b1)\1960(/\27t1)
/Az Q (t) dt — 1 —bzkgeeeo\zitl) + Tb29€9<T7t1) — Tb2969<T7>\2) +a10 — a0 — alﬁeeo‘?’tl)

" E +a2969(k2—t1) _ a2969(T—t1) + aQQeG(T—h) — by + b269()\2—t1)

Cbhoe?T—t1) | o ef(T=A2)
: Q) dt = — - —T?b20% + 07b2 2 + 2Ta260° — 20%az Xy + 2Tbyfe’ " —22)
Ag 203 —2bo A2l — 2(12960(717)\2) + 2a-0 — 2b269(T7>\2) + 2bs

Now, total number of deteriorated units during [0, 7] is given by,
DI, =Production in [0, A\;]4+ Production in [A1,¢1]- Demand in [0, A\;] — Demand in [A1, A2] — Demand
in [)\27 T]
_Bf a1—|—b1t dt—‘rﬂf a1—|—b1)\1) dt
—fo a1+b1t f)‘l a1—|—b1)\1) dt—f)\q; (ag—bzt) dt

1 1 1 1
= *iblﬂ)\% + b1ﬂ>\1t1 —+ 6t1a1 + 51)1/\% — bl)\l)\Q — Azal + §T2b2 — ibQA% — CLQT -+ a2)\2 (329)

Cost of production during [0, ¢1] is given by,

POy = /tl ﬁal (R (t))(lfW) du
0

A1 t1

= Loy (a1 + blu)(lf’” du + ﬂal (CL1 + bl)\l)(177> du
0 A1

—a) £ (b v .
— Ban ( 4t (blvl )T L bt an) (- )\1)) (3.30)
1

Case 3: 0<t: <A <A <T
For this case, using (3.1),

(,871)(0,1+b1t) 5 OStStl
aQ — (a1 + bit) ;o 1 <t< )\
dt +0Q(t) = — (a1 + b1 \1) i A<t < (3.31)
*(aszgt) 3 )\QStST
To solve (3.31), we use the initial condition @ (0) = 0,
aqQ
E—FGQ() (B—1) (a1 + bit); 0<t<ty (3.32)
The solution is 1
QW) =55 (B-1) (b1t9 Y a1 — b — (a16 — bl)e—‘”) (3.33)

At time t = ¢; the production stops and the level of stock is at its maximum value S, i.e. Q(t1) =S
and we solve,
aQ

P +4 GQ( ) (a1 4 blt); t1 <t< A\ (334)

which results in

e 0t=t1) 692 4 =001y 4,0 4+ q10e 1) — pit0 ) (3.35)

Q(t) = 072 ( _ble—e(t—tl) o 0410 _ b1
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Now, using continuity of the function Q (t) at ¢ = A1 we solve,

d
dif FO0 ) = — (a1 +biA): A << (3.36)

whose solution is

1 e—@(t—t1)502 + bltlee—e(t—tl) + alee—e(t—tl) _ ble—G(t—tl)
= — 3.37
Q( ) 02 ( _bl)\19+b1€79(t7>\1) _alg ( )
Again, using the continuity of @ (¢) at ¢t = A2, we solve the differential equation,
dq
— + 9Q (t) = — (az — bzt) 5 AQ S t S T (338)

dt

which gives

"P270h; 010 + "2 7by\00 — "D 502 — 1 Dpy 10
Q (t) = _i +69(>\27t)a19 — 69()\27t)a29 — 69<t1’t)a19 — botl — 69()\27”[72 (3.39)
Jre(?(itl—t)bl . ee(Al—t)bl + a0 + by

As similar to other cases, we use the boundary condition @ (7") = 0 in (3.39), the maximum level of
stock is as below:

—biA10e 0T =22) _ o Xgfe 0T =22) 4 1 0e 0T 1) _ g 9= 0(T—A2)
+a20670(T7>‘2> + aﬁeig(T*tl) + bT0 + bzefg(Tsz) — b1679<T7t1> (3.40)
+b1679(T*A1) — a0 — by

1

S=- 92e—0(T—t1)

By substituting S in (3.35), (3.37) and (3.39), we have Q (t) as under,

b1)\1069(>\27t) + bgkzeee()\zit) + a1969<)\27t> — a29€9(>\27t)
Q) = = —Tby0e? T8 — pye?P2=t) _ 0=t ,0e9(T=1) 4 poef(T—1) (3.41)
—b1t0 — a10 + by

L[ bixi0e?P278 4y no0efP2=8) 1068 P278 _ g,0e0 (P21 349
Q=5 ( —Tbo0e” "™ —bye” 27 4 420" 4 boe? T — b1 — 16 ) (3.42)
Q) = _012 (Tbgee”*” — a0’ T byt — b T 4 400 + bg) (3.43)
Using (3.33), (3.41), (3.42) and (3.43),
Total inventory during [0,7] is ,
T t1 A1 A2 T
TIs :/ Q (1) dt:/ Q(t) dt+ Q(t) dt + Q(t) dt + Q(t) dt (3.44)
0 0 ty A1 A2

where,

f1 Q) dt = 1 b1 BtI0? + 20181107 — b1t70° — 2a1£16° — 2b15t16
0 203\ —2a1360 + 201110 + 2a10 + 2018 — 2by + (201860 — 20,0 — 2b18 + 2by) e~

b1AT0% — b1t76° 4 2a1 X107 — 2a116% — 2b1 A1 0”2~
—2()2)\29690\27“) + 21)1)\1069()\27/\1) + 2b2)\2969<>\27/\1)
/*1 Q) di= — L +2Tby0e” T 1) — 2Tby0e?T=*1) — 2b1 \16 + 2b1160

t o268 —2a10e7P27t) 4 20,0721 96, 0efP27M) 90,08 (P2 A)
—2a20e?T=11) 1 24,0e?(T=21) 4 2p,efr2—t1) _ 9p,0(N2=21) _ 9p, o0(T—t1)
+2()260(T7>\1) + 2b1€0(>\17t1) — 2by

b1)\%02 — b1>\1)\292 + a1)\102 — (11)\292 — b1)\19 — b2>\29
A2 Q) di= - +Tba0e”T=22) 4 by 20”272 4 by Apfe? P27 A1) — Thygef (M)
A T 03 | —a10 4 a2 — a20e? T 4 q10e7P2 M) g0 M) 4,08 (T M)
Lby — byl T=22) _ poef(P2=A1) o p, 0T A1)
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1 ( T2b292 — A%bg@z — 2Ta292 —+ 2(1292)\2 + 2ba\20 )

T
he QU =555\ _9Th,0eT 3 — 20, + 20,0673 — 9by 4 2y T2

Now, the total number of deteriorated units during [0, 7] is given by,
DI3 =Production in [0,¢1] — Demand in [0, \1] — Demand in [A1, A2] — Demand in [A2, T

t1 A1 A2 T
= ﬁ/ (a1 + blt) dt — / (a1 =+ blt) dt — / (a1 + bl)\l) dt — / (CL2 — bgt) dt
0 0 A A

1 2

= %blﬁti + a16t1 + %b1)\§ —bi A A2 — a1 + %T2b2 — %bg)\g —a2T + as s (345)

Cost of production during [0, ¢1] is given by,

t1 t1
PCs = / Bon (R (t) 7 du = / Ba (a1 + b)) du
0 0

_ —a] 4 (bit1 +a1)”
— o (i (i) (3.46)

The Total cost of an inventory system is defined as the sum of the Inventory holding cost, the Deteri-
oration cost and the Purchase cost. For all the three cases discussed above, we denote and define this
as under:

Ci(t1,T) = £ [ChTIH + C4DIi + PC1] 3 0< M <<t <T
C(thT) = Cy (thT) = % [ChTIQ + CyDIs + PCQ]  0< <t <X\ <T (347)
Cs(t1,T):%[ChT13+CdDI3+P03] ; 0t <M< <LST

To find the optimal values of ¢; and 7', which minimizes total cost of an inventory system C'(¢t1,7T),

we use fundamental calculus. Solve g?f = 0 and %c%,; = 0 simultaneously to find ¢; and 7T, provided
2 2 2 2 2 2
that they satisfy the sufficient conditions 8&?’ > 0, %TC; > 0 and aagi %TC;‘ - ( atzl%T) > 0, where

i=1,23.
Computational Algorithm

Step 1: Assign values to the parameters.

Step 2: Compute ¢; and T'using gff =0, 68% =0fori=1,2,3.

Step 3: If 0 < Ay < X2 < t1 < T then Ci (t1,T) is optimal, compute C4 (t1,7) and S using (3.11),
else go to Step 4.

Step 4: If 0 < Ay < ¢1 < A2 < T then Cy (¢1,T) is optimal, compute C2 (t1,7) and S using (3.25),
else Cs5 (t1,T) is optimal, compute C3 (t1,7) and S using (3.40).

4  Concluding remarks

To implement the computational algorithm, one needs to evaluate optimal values of t; and T by
solving the equations ‘Zf; =0, %CT"' = 0 case wise for : = 1,2,3. As equations ‘?)fl = 0 and %CTi' =0
are highly nonlinear functions of ¢; and T', one may use Newton Raphson method for suitable values
of a1, b1,az2,b2, A1, \2,0,v and a1, to find optimal values of tJand T™. So, the corresponding minimum
value of the average cost of an inventory system C (¢7,77) is minimum. Convexity of cost function
is difficult to discuss analytically. This says C (¢7,7”) may not be global minimum but may be local
minimum. One may extend this model, using advance optimization techniques like, PSO, GA etc. to

find the minimum cost of an inventory system.
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