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Abstract For the items like trendy goods, mobile phones and such others, it is examined
that the demand rate is of trapezoidal type. The aim of this study is to present optimal
production policy for deteriorating items, when the demand of an item is trapezoidal
type. Rate of deterioration is assumed to be constant and rate of production depends
upon demand rate. Shortages are not allowed. Mathematical formulation is derived in
order to minimize the total cost of an inventory system. An easy to use algorithm is
presented to decide an optimal production policy.
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1 Introduction

In recent competitive market, it is observed that for items like fancy/seasonal/trendy goods, the demand
of an item increases with respect to time over a period of time. Thereafter, the item consumed by level
demand for a short period, followed by a decrease in demand with time again. Resh et al. [19] and
Donaldson [9] made first attempts to integrate the linear trend in demand for an inventory system. For
the first time, Hill [15] considered ramp type demand pattern to develop an optimal ordering policy. In
case of ramp type demand rate, the rate increases linearly with time and thereafter it stabilizes. Such
demand pattern is observed in newly introduced consumable items in the market. Many researchers
have studied models with ramp type demand. The inventory models with the ramp type demand
are studied by Wu et al. [28, 29], Wu and Ouyang [27], Wu [26], Giri et al. [11], Deng [7], Chen et
al. [2], Deng et al. [8], Cheng and Wang [3], He et al. [14], Skouri et al. [23]. Moreover, the goods in
the inventory system always retain their physical quality is not true in common. In current business
environment, effect of deterioration is expected to be incorporated in an inventory system. The process
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which depletes the present value or usefulness of an item and does not allow their original use, due to
degradation, spoilage, evaporation etc. is known as deterioration. First of all Ghare and Schrader [10]
incorporated deterioration in an inventory system. Covert and Philip [5] used Weibull distribution
to extend the idea of Ghare and Schrader [10]. Dave and Patel [6], Goyal [13], Raafat [18], Shah and
Shah [21], Goyal and Giri [12], Manna and Chaudhri [17], Skouri et al. [24], Ruxin et al. [20] and Bakker
et al. [1] cite an up to date review on deteriorating inventory system. Cheng and Wang [3] extended this
idea from ramp type demand to trapezoidal type demand. Cheng et al [4] integrated shortages with
partial backlogging and deterioration in an inventory system to extend the idea of Cheng and Wang [3].
Recent articles on trapezoidal type demand by Shukla and Suthar [22], Wu et. al. [30, 31], Vandana
and Shrivastava [25]. Manna et al. [16] present production inventory system for deteriorating items
having ramp type demand. The demand rate increases with time up to a certain point of time and
then stabilizes at constant level. Models were formulated without shortages and with two assumptions
that: a) the demand rate is stabilized after the production stops and before the time when inventory
level reaches to zero and b) the deterioration is constant.

Our present work is an extension of the work of Manna et al. [16] with the assumption that the
production process stops before the inventory level reaches to zero and in one of the three situations:
1) before the demand rate becomes constant, 2) when the demand rate is constant and 3) after the
demand rate is constant. In this paper, section 1 introduces the article in brief. Assumptions and
notations are presented in section 2. Section 3 deals with the mathematical formulation for each of the
three cases along with the computational algorithm and the conclusions are described in section 4.

2 Assumptions and notations

To formulate the proposed inventory system mathematically, the following assumptions are made and
the notations to be used by us in this paper are also explained below:

1. The inventory system deals with a single item. Rate of replenishment rate is assumed to be finite
and lead time is considered to be zero or negligible. The length of planning horizon is infinite.
Inventory system does not possess shortages.

2. The function Q (t) represents level of an stock at any instant of time t during [0, T ], where T is
length of ordering cycle.

3. The demand is assumed to be trapezoidal type, sayR (t), wereR (t) =







a1 + b1t ; 0 ≤ t ≤ λ1

a1 + b1λ1 ; λ1 ≤ t ≤ λ2

a2 − b2t ; λ2 ≤ t ≤ T

,

where a1, a2, b1, b2 are scaling parameters for rate of demand. During [0, λ1] demand increases
with respect to time, then it stabilizes during [λ1, λ2] and thereafter it decreases as t increases
during [λ2, T ].

4. The level of stock deteriorates with a constant rate say θ (0 < θ < 1) during the ordering cycle
[0, T ]. Again, deteriorated stock is neither repaired nor replaced during [0, T ].

5. Inventory system is assumed as production inventory system, where initial stock level is assumed
to be zero at time t = 0. Production process starts at t = 0 and continues up to time t = t1. At
time t = t1, stock level attains its maximum say S.

6. The unit production cost of an item is defined as Cp = α1 (R (t))−γ , where γ > 0 and γ 6=
2(Manna et. al [16]). α1 > 0 as Cp > 0 and R (t) is non – negative. As demand increases unit
production cost will decrease, which validates that Cp and R (t) are in inverse proportion.

7. We consider Ch is the holding cost / unit; Cd is the cost due to deterioration / unit; C (t1, T ) is
an average cost of an inventory system.

3 Mathematical formulation and computational algorithm

As, Q (t) represents level of stock at any instant of time t (say) during [0, T ]. Initially level of stock is
assumed to be zero at t = 0, at the same time production takes place and continues up to time t = t1
with maximum stock level say S. Hence, during [0, t1]
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dQ

dt
+ θQ (t) =

{

(β − 1)R (t) ; 0 ≤ t ≤ t1
−R (t) ; t1 ≤ t ≤ T

(3.1)

Now depending upon the value of t1 the following three different cases may arise:
Case 1: 0 ≤ λ1 ≤ λ2 ≤ t1 ≤ T , Case 2: 0 ≤ λ1 ≤ t1 ≤ λ2 ≤ T and Case 3: 0 ≤ t1 ≤ λ1 ≤ λ2 ≤ T.

Hence, we compute below separately for all the cases for the proposed production inventory system.
Case 1: 0 ≤ λ1 ≤ λ2 ≤ t1 ≤ T

At timet = 0, the production starts with zero stock level and stops at time t = t1. Using (3.1)

dQ

dt
+ θQ (t) =















(β − 1) (a1 + b1t) ; 0 ≤ t ≤ λ1

(β − 1) (a1 + b1λ1) ; λ1 ≤ t ≤ λ2

(β − 1) (a2 − b2t) ; λ2 ≤ t ≤ t1
− (a2 − b2t) ; t1 ≤ t ≤ T

(3.2)

Using initial condition Q (0) = 0, we solve

dQ

dt
+ θQ (t) = (β − 1) (a1 + b1t) ; 0 ≤ t ≤ λ1 (3.3)

Its solution is

Q (t) =
(β − 1)

(

eθtb1tθ + eθta1θ − eθtb1 − a1θ + b1
)

e−θt

θ2
(3.4)

Using continuity of Q (t) at t = λ1 we solve

dQ

dt
+ θQ (t) = (β − 1) (a1 + b1λ1) ; λ1 ≤ t ≤ λ2 (3.5)

which results in

Q (t) = −

(

e−θtb1βλ1θ − eθta1βθ + eθtb1λ1θ + eθλ1b1β + eθta1θ

+a1βθ − eθλ1b1 − a1θ − b1β + b1

)

e−θt

θ2
(3.6)

Similarly, using continuity of Q (t) at t = λ2 we solve,

dQ

dt
+ θQ (t) = (β − 1) (a2 − b2t) ; λ2 ≤ t ≤ t1 (3.7)

which gives

Q (t) =
1

θ2









e
−θt









eθλ2b1βλ1θ + eθλ2b2βλ2θ − eθtb2βtθ + eθλ2a1βθ − eθλ2a2βθ

−eθλ2b1λ1θ − eθλ2b2λ2θ + eθta2βθ + eθtb2tθ − eθλ2a1θ + eθλ2a2θ

−eθλ2b2β − eθta2θ + eθtb2β − eθλ1b1β − a1βθ + eθλ2b2 − eθtb2
+eθλ1b1 + a1θ + b1β − b1

















(3.8)

Moreover, at time t = t1, level of stock is maximum, using Q (t1) = S we solve,

dQ

dt
+ θQ (t) = − (a2 − b2t) ; t1 ≤ t ≤ T (3.9)

which yields

Q (t) =
1

θ2

(

e−θ(t−t1)Sθ2 − e−θ(t−t1)b2t1θ + e−θ(t−t1)a2θ

+b2tθ + e−θ(t−t1)b2 − a2θ − b2

)

(3.10)

Using the boundary condition Q (T ) = 0 in (3.10), we evaluate the maximum level of stock as under:

S = −
1

θ2

(

b2t1θ + a2θ + b2Tθe
θ(T−t1) + b2 − (a2θ + b2)e

θ(T−t1)
)

(3.11)

By substituting S in (3.10), we have Q (t) as under, during [t1, T ]

Q (t) = −
1

θ2

(

e
θ(T−t)

Tb2θ − e
θ(T−t)

a2θ − b2tθ − e
θ(T−t)

b2 + a2θ + b2

)

(3.12)
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Using (3.4), (3.6), (3.8) and (3.12), the total inventory during [0, T ] is ,

TI1 =

∫ T

0

Q (t) dt =

∫ λ1

0

Q (t) dt+

∫ λ2

λ1

Q (t) dt+

∫ t1

λ2

Q (t) dt+

∫ T

t1

Q (t) dt (3.13)

where,

∫ λ1

0

Q (t) dt =
1

2θ3





(

b1βλ
2
1θ

2 + 2a1βλ1θ
2 − b1λ

2
1θ

2 − 2a1θ
2λ1

−2b1βλ1θ − 2a1βθ + 2b1λ1θ + 2a1θ + 2b1β − 2b1

)

+e−θλ1 (2a1βθ − 2a1θ − 2βb1 + 2b1)





∫ λ2

λ1

Q (t) dt =

−
1

θ3

(

b1βλ1
2
θ
2
− b1βλ1λ2θ

2 + a1βλ1θ
2
− a1βλ2θ

2
− b1λ1

2
θ
2 + b1λ1λ2θ

2

−a1λ1θ
2 + a1λ2θ

2 + b1β + a1βθe
−θλ1 − b1βe

θ(λ1−λ2) − e
−θλ2a1βθ − b1

)

−
1

θ3

(

−a1θe
−θλ1 − b1βe

−θλ1 + b1e
θ(λ1−λ2) + e

−θλ2a1θ + e
−θλ2b1β + e

−θλ1b1 − e
−θλ2b1

)

∫ t1

λ2

Q (t) dt =

−
1

2θ3









−2b2 + 2a2βλ2θ
2
− 2a2βt1θ

2
− 2b2βt1θ − b2βλ2

2
θ
2 + b2βt1

2
θ
2

−2b1βλ1θ + 2b2β + 2a1θ − 2a2θ − 2a1βθ + 2a2βθ + 2b1λ1θ − 2a2λ2θ
2

+2a2t1θ
2 + 2b2t1θ + b2λ2

2
θ
2
− b2t1

2
θ
2









−
1

2θ3
e
−θ(λ2+t1)















2eθt1b1 − 2eθ(λ1+t1)b1 + 2eθλ2a1θ − 2eθt1b1β + 2eθ(λ1+λ2)b1 − 2eθλ2a1βθ

−2eθt1a1θ + 2eθt1a1βθ − 2e2θλ2a2βθ + 2e2θλ2a1βθ − 2e2θλ2b2λ2θ

−2e2θλ2b1λ1θ + 2e2θλ2b2 − 2e2θλ2a1θ + 2e2θλ2a2θ − 2e2θλ2b2β

−2eθ(λ1+λ2)b1β + 2e2θλ2b1βλ1θ + 2e2θλ2b2βλ2θ − 2e2θλ2b1 + 2e2θλ2b1β















∫ T

t1

Q (t) dt =
1

2θ3

(

T 2b2θ
2 − b2t

2
1θ

2 − 2Ta2θ
2 + 2a2θ

2t1 + 2b2t1θ − 2eθ(T−t1)Tb2θ

−2a2θ + 2eθ(T−t1)a2θ − 2b2 + 2eθ(T−t1)b2

)

Now, total number of deteriorated units during [0, T ] is given by,
DI1 =Production in [0, λ1]+ Production in [λ1, λ2] + Production in [λ2, t1] – Demand in [0, λ1] –
Demand in [λ1, λ2] – Demand in [λ2, T ]

= β
∫ λ1

0
(a1 + b1t) dt+ β

∫ λ2

λ1

(a1 + b1λ1) dt+ β
∫ t1
λ2

(a2 − b2t) dt

−
∫ λ1

0
(a1 + b1t) dt−

∫ λ2

λ1

(a1 + b1λ1) dt−
∫ T

λ2

(a2 − b2t) dt

= − 1
2
βb1λ

2
1 + βb1λ1λ2 + βa1λ2 +

1
2
βb2λ

2
2 −

1
2
βb2t

2
1 − βa2λ2

+βa2t1 +
1
2
b1λ

2
1 − b1λ1λ2 − a1λ2 +

1
2
T 2b2 −

1
2
b2λ

2
2 − a2T + a2λ2

(3.14)

Cost of production during [0, t1] is given by,

PC1 =

∫ t1

0

βα1 (R (t))(1−γ)
du

=

∫ λ1

0

βα1 (a1 + b1u)
(1−γ)

du+

∫ λ2

λ1

βα1 (a1 + b1λ1)
(1−γ)

du+

∫ t1

λ2

βα1 (a2 − b2u)
(1−γ)

du

= βα1

(

−a
γ
1 + (b1λ1 + a1)

γ

b1γ
+ (b1λ1 + a1)

γ−1 (λ2 − λ1) +
(−b2λ2 + a2)

γ − (a2 − Tb2)
γ

b2γ

)

(3.15)

Case 2: 0 ≤ λ1 ≤ t1 ≤ λ2 ≤ T
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In this case, from (3.1),

dQ

dt
+ θQ (t) =















(β − 1) (a1 + b1t) ; 0 ≤ t ≤ λ1

(β − 1) (a1 + b1λ1) ; λ1 ≤ t ≤ t1
− (a1 + b1λ1) ; t1 ≤ t ≤ λ2

− (a2 − b2t) ; λ2 ≤ t ≤ T

(3.16)

We solve differential equation given below, using initial condition Q (0) = 0,

dQ

dt
+ θQ (t) = (β − 1) (a1 + b1t) ; 0 ≤ t ≤ λ1 (3.17)

whose solution is

Q (t) =
(β − 1)

θ2

(

b1tθ + a1θ − b1 − (a1θ − b1)e
−θt
)

(3.18)

We use continuity of Q (t) at t = λ1 to solve the differential equation,

dQ

dt
+ θQ (t) = (β − 1) (a1 + b1λ1) ; λ1 ≤ t ≤ t1 (3.19)

which gives

Q (t) = −
1

θ2

(

b1βλ1θ − a1βθ + b1λ1θ + b1βe
θ(λ1−t) + a1θ + a1βθe

−θt

−b1e
θ(λ1−t) − (a1θ + b1β − b1)e

−θt

)

(3.20)

Now at t = t1 the production process stops and the maximum level of stock is S, i.e. Q (t1) = S. We
solve,

dQ

dt
+ θQ (t) = − (a1 + b1λ1) ; t1 ≤ t ≤ λ2 (3.21)

for which we have

Q (t) =
1

θ

(

e
−θ(t−t1)Sθ + e

−θ(t−t1)b1λ1 + e
−θ(t−t1)a1 − b1λ1 − a1

)

(3.22)

Using continuity of Q (t) at t = λ2, we solve the differential equation,

dQ

dt
+ θQ (t) = − (a2 − b2t) ; λ2 ≤ t ≤ T (3.23)

which yields

Q (t) = −
1

θ2





eθ(λ2−t)b1λ1θ + eθ(λ2−t)b2λ2θ − eθ(t1−t)Sθ2 − eθ(t1−t)b1λ1θ

+eθ(λ2−t)a1θ − eθ(λ2−t)a2θ − eθ(t1−t)a1θ − b2tθ − eθ(λ2−t)b2
+a2θ + b2



 (3.24)

Using the boundary condition Q (T ) = 0 in (3.24), we evaluate the maximum level of stock as under:

S =
1

θ2e−θ(T−t1)

(

b1λ1θe
−θ(T−λ2) + b2λ2θe

−θ(T−λ2) − b1λ1θe
−θ(T−t1) + a1θe

−θ(T−λ2)

−a2θe
−θ(T−λ2) − a1θe

−θ(T−t1) − b2Tθ − b2e
−θ(T−λ2) + a2θ + b2

)

(3.25)

By substituting S in (3.22) and (3.24), we have Q (t) as under,

Q (t) = −
1

θ2

(

eθ(T−t)Tb2θ − eθ(λ2−t)b1λ1θ − eθ(λ2−t)b2λ2θ − eθ(T−t)a2θ

−eθ(λ2−t)a1θ + eθ(λ2−t)a2θ + b1λ1θ − eθ(T−t)b2 + eθ(λ2−t)b2 + a1θ

)

(3.26)

Q (t) = −
1

θ2

(

e
θ(T−t)

Tb2θ − e
θ(T−t)

a2θ − b2tθ − e
θ(T−t)

b2 + a2θ + b2

)

(3.27)

Using (3.18), (3.20), (3.26) and (3.27),
The total inventory during [0, T ] is ,

TI2 =

∫ T

0

Q (t) dt =

∫ λ1

0

Q (t) dt+

∫ t1

λ1

Q (t) dt+

∫ λ2

t1

Q (t) dt+

∫ T

λ2

Q (t) dt (3.28)
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where,

∫ λ1

0

Q (t) dt =
1

2θ3





b1βλ
2
1θ

2 + 2a1βλ1θ
2 − b1λ

2
1θ

2 − 2a1λ1θ
2 − 2b1βλ1θ

−2a1βθ + 2b1λ1θ + 2a1θ + 2b1β + 2a1βθe
−θλ1 − 2b1−

2a1θe
−θλ1 − 2b1βe

−θλ1 + 2b1e
−θλ1





∫ t1

λ1

Q (t) dt = −
1

θ3









b1βλ
2
1θ

2 − b1βλ1t1θ
2 + a1βλ1θ

2 − a1βt1θ
2 − b1λ

2
1θ

2

+b1λ1t1θ
2 − a1λ1θ

2 + a1t1θ
2 + b1β + a1βθe

−θλ1 − b1βe
θ(λ1−t1)

−a1βθe
−θt1 − b1 − a1θe

−θλ1 − b1βe
−θλ1 + b1e

θ(λ1−t1) + a1θe
−θt1

+b1βe
−θt1 + b1e

−θλ1 − b1e
−θt1









∫ λ2

t1

Q (t) dt = −
1

θ3









b1λ1λ2θ
2 − b1λ1t1θ

2 + a1λ2θ
2 − a1t1θ

2 + b1λ1θ + b2λ2θ − b1λ1θe
θ(λ2−t1)

−b2λ2θe
θ(λ2−t1) + Tb2θe

θ(T−t1) − Tb2θe
θ(T−λ2) + a1θ − a2θ − a1θe

θ(λ2−t1)

+a2θe
θ(λ2−t1) − a2θe

θ(T−t1) + a2θe
θ(T−λ2) − b2 + b2e

θ(λ2−t1)

−b2e
θ(T−t1) + b2e

θ(T−λ2)









∫ T

λ2

Q (t) dt = −
1

2θ3

(

−T 2b2θ
2 + θ2b2λ

2
2
+ 2Ta2θ

2 − 2θ2a2λ2 + 2Tb2θe
θ(T−λ2)

−2b2λ2θ − 2a2θe
θ(T−λ2) + 2a2θ − 2b2e

θ(T−λ2) + 2b2

)

Now, total number of deteriorated units during [0, T ] is given by,
DI2 =Production in [0, λ1]+ Production in [λ1, t1]- Demand in [0, λ1] – Demand in [λ1, λ2] – Demand
in [λ2, T ]

= β
∫ λ1

0
(a1 + b1t) dt+ β

∫ t1
λ1

(a1 + b1λ1) dt

−
∫ λ1

0
(a1 + b1t) dt−

∫ λ2

λ1

(a1 + b1λ1) dt−
∫ T

λ2

(a2 − b2t) dt

= −
1

2
b1βλ

2
1 + b1βλ1t1 + βt1a1 +

1

2
b1λ

2
1 − b1λ1λ2 − λ2a1 +

1

2
T

2
b2 −

1

2
b2λ

2
2 − a2T + a2λ2 (3.29)

Cost of production during [0, t1] is given by,

PC2 =

∫ t1

0

βα1 (R (t))(1−γ)
du

=

∫ λ1

0

βα1 (a1 + b1u)
(1−γ)

du+

∫ t1

λ1

βα1 (a1 + b1λ1)
(1−γ)

du

= βα1

(

−a
γ
1 + (b1λ1 + a1)

γ

b1γ
+ (b1λ1 + a1)

γ−1 (t1 − λ1)

)

(3.30)

Case 3: 0 ≤ t1 ≤ λ1 ≤ λ2 ≤ T

For this case, using (3.1),

dQ

dt
+ θQ (t) =















(β − 1) (a1 + b1t) ; 0 ≤ t ≤ t1
− (a1 + b1t) ; t1 ≤ t ≤ λ1

− (a1 + b1λ1) ; λ1 ≤ t ≤ λ2

− (a2 − b2t) ; λ2 ≤ t ≤ T

(3.31)

To solve (3.31), we use the initial condition Q (0) = 0,

dQ

dt
+ θQ (t) = (β − 1) (a1 + b1t) ; 0 ≤ t ≤ t1 (3.32)

The solution is

Q (t) =
1

θ2
(β − 1)

(

b1tθ + a1θ − b1 − (a1θ − b1)e
−θt
)

(3.33)

At time t = t1 the production stops and the level of stock is at its maximum value S, i.e. Q (t1) = S

and we solve,
dQ

dt
+ θQ (t) = − (a1 + b1t) ; t1 ≤ t ≤ λ1 (3.34)

which results in

Q (t) =
1

θ2

(

e−θ(t−t1)Sθ2 + e−θ(t−t1)b1t1θ + a1θe
−θ(t−t1) − b1tθ

−b1e
−θ(t−t1) − a1θ − b1

)

(3.35)
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Now, using continuity of the function Q (t) at t = λ1 we solve,

dQ

dt
+ θQ (t) = − (a1 + b1λ1) ; λ1 ≤ t ≤ λ2 (3.36)

whose solution is

Q (t) =
1

θ2

(

e−θ(t−t1)Sθ2 + b1t1θe
−θ(t−t1) + a1θe

−θ(t−t1) − b1e
−θ(t−t1)

−b1λ1θ + b1e
−θ(t−λ1) − a1θ

)

(3.37)

Again, using the continuity of Q (t) at t = λ2, we solve the differential equation,

dQ

dt
+ θQ (t) = − (a2 − b2t) ; λ2 ≤ t ≤ T (3.38)

which gives

Q (t) = −
1

θ2





eθ(λ2−t)b1λ1θ + eθ(λ2−t)b2λ2θ − eθ(t1−t)Sθ2 − eθ(t1−t)b1t1θ

+eθ(λ2−t)a1θ − eθ(λ2−t)a2θ − eθ(t1−t)a1θ − b2tθ − eθ(λ2−t)b2

+eθ(t1−t)b1 − eθ(λ1−t)b1 + a2θ + b2



 (3.39)

As similar to other cases, we use the boundary condition Q (T ) = 0 in (3.39), the maximum level of
stock is as below:

S = −
1

θ2e−θ(T−t1)





−b1λ1θe
−θ(T−λ2) − b2λ2θe

−θ(T−λ2) + b1t1θe
−θ(T−t1) − a1θe

−θ(T−λ2)

+a2θe
−θ(T−λ2) + a1θe

−θ(T−t1) + b2Tθ + b2e
−θ(T−λ2) − b1e

−θ(T−t1)

+b1e
−θ(T−λ1) − a2θ − b2



 (3.40)

By substituting S in (3.35), (3.37) and (3.39), we have Q (t) as under,

Q (t) =
1

θ2





b1λ1θe
θ(λ2−t) + b2λ2θe

θ(λ2−t) + a1θe
θ(λ2−t) − a2θe

θ(λ2−t)

−Tb2θe
θ(T−t) − b2e

θ(λ2−t) − b1e
θ(λ1−t) + a2θe

θ(T−t) + b2e
θ(T−t)

−b1tθ − a1θ + b1



 (3.41)

Q (t) =
1

θ2

(

b1λ1θe
θ(λ2−t) + b2λ2θe

θ(λ2−t) + a1θe
θ(λ2−t) − a2θe

θ(λ2−t)

−Tb2θe
θ(T−t) − b2e

θ(λ2−t) + a2θe
θ(T−t) + b2e

θ(T−t) − b1λ1θ − a1θ

)

(3.42)

Q (t) = −
1

θ2

(

Tb2θe
θ(T−t)

− a2θe
θ(T−t)

− b2tθ − b2e
θ(T−t) + a2θ + b2

)

(3.43)

Using (3.33), (3.41), (3.42) and (3.43),
Total inventory during [0, T ] is ,

TI3 =

∫ T

0

Q (t) dt =

∫ t1

0

Q (t) dt+

∫ λ1

t1

Q (t) dt+

∫ λ2

λ1

Q (t) dt+

∫ T

λ2

Q (t) dt (3.44)

where,

∫ t1

0

Q (t) dt =
1

2θ3

(

b1βt
2
1θ

2 + 2a1βt1θ
2 − b1t

2
1θ

2 − 2a1t1θ
2 − 2b1βt1θ

−2a1βθ + 2b1t1θ + 2a1θ + 2b1β − 2b1 + (2a1βθ − 2a1θ − 2b1β + 2b1) e
−θt1

)

∫ λ1

t1

Q (t) dt = −
1

2θ3

















b1λ
2
1θ

2 − b1t
2
1θ

2 + 2a1λ1θ
2 − 2a1t1θ

2 − 2b1λ1θe
θ(λ2−t1)

−2b2λ2θe
θ(λ2−t1) + 2b1λ1θe

θ(λ2−λ1) + 2b2λ2θe
θ(λ2−λ1)

+2Tb2θe
θ(T−t1) − 2Tb2θe

θ(T−λ1) − 2b1λ1θ + 2b1t1θ

−2a1θe
θ(λ2−t1) + 2a2θe

θ(λ2−t1) + 2a1θe
θ(λ2−λ1) − 2a2θe

θ(λ2−λ1)

−2a2θe
θ(T−t1) + 2a2θe

θ(T−λ1) + 2b2e
θ(λ2−t1) − 2b2e

θ(λ2−λ1) − 2b2e
θ(T−t1)

+2b2e
θ(T−λ1) + 2b1e

θ(λ1−t1) − 2b1

















∫ λ2

λ1

Q (t) dt =
1

θ3









b1λ
2
1θ

2 − b1λ1λ2θ
2 + a1λ1θ

2 − a1λ2θ
2 − b1λ1θ − b2λ2θ

+Tb2θe
θ(T−λ2) + b1λ1θe

θ(λ2−λ1) + b2λ2θe
θ(λ2−λ1) − Tb2θe

θ(T−λ1)

−a1θ + a2θ − a2θe
θ(T−λ2) + a1θe

θ(λ2−λ1) − a2θe
θ(λ2−λ1) + a2θe

θ(T−λ1)

+b2 − b2e
θ(T−λ2) − b2e

θ(λ2−λ1) + b2e
θ(T−λ1)








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∫ T

λ2

Q (t) dt =
1

2θ3

(

T 2b2θ
2 − λ2

2b2θ
2 − 2Ta2θ

2 + 2a2θ
2λ2 + 2b2λ2θ

−2Tb2θe
θ(T−λ2) − 2a2θ + 2a2θe

θ(T−λ2) − 2b2 + 2b2e
θ(T−λ2)

)

Now, the total number of deteriorated units during [0, T ] is given by,
DI3 =Production in [0, t1] – Demand in [0, λ1] – Demand in [λ1, λ2] – Demand in [λ2, T ]

= β

∫ t1

0

(a1 + b1t) dt−

∫ λ1

0

(a1 + b1t) dt−

∫ λ2

λ1

(a1 + b1λ1) dt−

∫ T

λ2

(a2 − b2t) dt

=
1

2
b1βt

2
1 + a1βt1 +

1

2
b1λ

2
1 − b1λ1λ2 − a1λ2 +

1

2
T

2
b2 −

1

2
b2λ

2
2 − a2T + a2λ2 (3.45)

Cost of production during [0, t1] is given by,

PC3 =

∫ t1

0

βα1 (R (t))(1−γ)
du =

∫ t1

0

βα1 (a1 + b1u)
(1−γ)

du

= βα1

(

−a
γ
1 + (b1t1 + a1)

γ

b1γ

)

(3.46)

The Total cost of an inventory system is defined as the sum of the Inventory holding cost, the Deteri-
oration cost and the Purchase cost. For all the three cases discussed above, we denote and define this
as under:

C (t1, T ) =







C1 (t1, T ) =
1
T
[ChTI1 + CdDI1 + PC1] ; 0 ≤ λ1 ≤ λ2 ≤ t1 ≤ T

C2 (t1, T ) =
1
T
[ChTI2 + CdDI2 + PC2] ; 0 ≤ λ1 ≤ t1 ≤ λ2 ≤ T

C3 (t1, T ) =
1
T
[ChTI3 + CdDI3 + PC3] ; 0 ≤ t1 ≤ λ1 ≤ λ2 ≤ T

(3.47)

To find the optimal values of t1 and T , which minimizes total cost of an inventory system C (t1, T ),
we use fundamental calculus. Solve ∂Ci

∂t1
= 0 and ∂Ci

∂T
= 0 simultaneously to find t1 and T , provided

that they satisfy the sufficient conditions ∂2Ci

∂t2
1

> 0, ∂2Ci

∂T2 > 0 and ∂2Ci

∂t2
1

∂2Ci

∂T2 −
(

∂2Ci

∂t1 ∂T

)2

> 0, where

i = 1, 2, 3.

Computational Algorithm

Step 1: Assign values to the parameters.
Step 2: Compute t1 and Tusing ∂Ci

∂t1
= 0, ∂Ci

∂T
= 0 for i = 1, 2, 3.

Step 3: If 0 ≤ λ1 ≤ λ2 ≤ t1 ≤ T then C1 (t1, T ) is optimal, compute C1 (t1, T ) and S using (3.11),
else go to Step 4.
Step 4: If 0 ≤ λ1 ≤ t1 ≤ λ2 ≤ T then C2 (t1, T ) is optimal, compute C2 (t1, T ) and S using (3.25),
else C3 (t1, T ) is optimal, compute C3 (t1, T ) and S using (3.40).

4 Concluding remarks

To implement the computational algorithm, one needs to evaluate optimal values of t1 and T by
solving the equations ∂Ci

∂t1
= 0, ∂Ci

∂T
= 0 case wise for i = 1, 2, 3. As equations ∂Ci

∂t1
= 0 and ∂Ci

∂T
= 0

are highly nonlinear functions of t1 and T , one may use Newton Raphson method for suitable values
of a1, b1, a2, b2, λ1, λ2, θ, γ and α1, to find optimal values of t∗1and T ∗. So, the corresponding minimum
value of the average cost of an inventory system C (t∗1, T

∗) is minimum. Convexity of cost function
is difficult to discuss analytically. This says C (t∗1, T

∗) may not be global minimum but may be local
minimum. One may extend this model, using advance optimization techniques like, PSO, GA etc. to
find the minimum cost of an inventory system.
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