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Abstract 
 
The covariant expressions are derived for the energy, momentum, and 
angular momentum of an arbitrary physical system of particles and 

vector fields acting on them. These expressions are based on the Lagrange 
function of the system, are the additive integrals of motion, and are 

conserved over time in closed systems. The angular momentum 
pseudotensor and the radius-vector of the system’s center of momentum 
are determined in a covariant form. By integrating the motion equation 

over the volume the integral vector is calculated and the impossibility of 
treatment of the integral vector as the system’s four-momentum is proved 

as opposed to how it is done in the general theory of relativity. In contrast 
to the system’s four-momentum, which collectively characterizes the 

motion of the system’s particles in the surrounding fields, the physical 
meaning of the integral vector consists in the taking account of all the 

energies and energy fluxes of the fields generated by the particles. The 
difference between the four-momentum and the integral vector is 
associated not only with the duality of particles and fields, but also with 

different transformation laws for four-vectors and four-tensors of second 
order. As a result, the integral vector turns out to be a pseudo vector of a 

special kind. 
 

Keywords: integrals of motion; vector fields; covariant theory of 
gravitation; angular momentum pseudotensor; integral vector; relativistic 

uniform system. 
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1. Introduction 
 

When considering physical phenomena in the curved space-time, such additive physical quantities as 
energy, momentum and angular momentum of a system of particles and fields in some cases can be 

conserved over time and thus can uniquely characterize the system. This explains the importance of 
these quantities, which are integrals of motion, in mechanics as well as in other fields of physics. In 

the general case, in order to calculate these quantities the Lagrange function is used, which depends 
on the spacetime metric and on the fields, associated with the system’s particles [1]. 
 

The text below will be devoted mainly to the vector fields used to describe phenomena in 
macroscopic systems with a sufficiently large number of particles. The effects of gravitation will be 

considered within the framework of the covariant theory of gravitation [2]. In addition to the 
electromagnetic field, which is a vector field by its nature, we will also consider such vector fields as 
the acceleration field and the pressure field [3]. The acceleration field is intended to describe in a 
covariant way the motion of particles; similarly, the vector pressure field determines the elastic 

properties of matter. If necessary, we could also take into account the dissipation field [4] and the 
fields of strong and weak interactions [5], as the corresponding macroscopic vector fields. 



Bulletin of Pure and Applied Sciences/ Vol. 37-D (Physics), No .2 / July-December 2018 

[65] 
 

The choice of the vector fields is related to the fact that they always contain the four-potential, the 

field tensor and the stress-energy tensor of the field. In particular, this allows us to uniquely 
determine the energy of any part of the system, which is difficult, for example, in the general theory 

of relativity [6,7], which is a tensor theory in regard to the gravitational field. 
 

Throughout the text we will use the metric signature of the form (+, -, -, -). The initial point of our 
reasoning is the Lagrange function for the system of particles and four basic vector fields [8,9]: 
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where ,D
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D
 

is the four-potential of the gravitational field, described with the help of the 

scalar potential  and the vector potential D  of this field, 

0J u   is the mass four-current, 

0  is the mass density in the reference frame associated with the particle, 

cdx
u

ds


   is the four-velocity of a point particle, dx   is the four-displacement, and ds  is the 

interval, 

c  is the speed of light, as a measure of the speed of propagation of electromagnetic and gravitational 

interactions, 

,A
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A  is the four-potential of the electromagnetic field, specified by the scalar potential   

and the vector potential A of this field, 

0qj u   is the charge four-current, 

0q  is the charge density in the reference frame associated with the particle, 
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U  is the four-potential of the acceleration field, where   and U  denote the scalar and 

vector potentials, respectively, 
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Π  is the four-potential of the pressure field, consisting of the scalar 

potential   and the vector potential Π , 0p  
is the pressure in the reference frame associated with the 

particle, the ratio 
0

2
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determines the equation of the state of matter, 

3

16

c
k

G 
 , where    is a certain coefficient of the order of unity to be determined, 

G is the gravitational constant, 

R  is the scalar curvature, 

 is the cosmological constant,   
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Φ D D D D             is the gravitational tensor (the tensor of the gravitational 

field strengths), 

Φ g g Φ     
   is the definition of the gravitational tensor with contravariant indices with the 

use of the metric tensor g


, 

0  is the magnetic constant (vacuum permeability), 

F A A A A             is the electromagnetic tensor (the tensor of the electromagnetic 

field strengths), 
  is the coefficient of the acceleration field, 

u U U U U             is the acceleration tensor, calculated as the four-curl of the 

four-potential of the acceleration field, 

  is the coefficient of the pressure field, 

f                is the pressure field tensor, 

1 2 3g dx dx dx  is the invariant coordinate three-volume, expressed in terms of the product 

1 2 3dx dx dx of the differentials of spatial coordinates, and in terms of the square root g  of the 

determinant g  of the metric tensor taken with the negative sign. 

 

The Lagrange function (1) can be represented in the form ( , )
n n

L L r v , that is, as the function of the 

radius-vectors 
n

r  and velocities 
n

v of each of the set of particles that make up the system under 

consideration. With this in mind, the relativistic energy of the system, containing pN particles, can 

be determined from the formula [1]: 
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while the summation is carried out not only over all the particles, but also over all the three 
components of each particle’s velocity, as is required in operations with vector functions, including 

vector differentiation and scalar product of vectors. 
 

The index n in (2) specifies the number of a particular particle. We have placed this index over the 

vectors, describing the particles, in order not to confuse it with the usual indices of vectors, expressing 

the components of these vectors. 

 
After substituting (1) into (2) and the energy gauging, the expression for the energy was presented in 

[9], both for the system of individual particles and for the case of continuously distributed matter: 
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In (3) the scalar potentials  , ,  and   are the quantities averaged over the particles’ volume, 

which are multiplied by the masses of these particles, and the results are then summed over all the 

particles. Since the fields can act far away from their sources, the scalar potentials include not only the 
intrinsic averaged potentials of the particle under consideration, but also the averaged potentials of 

the fields from the entire set of other particles at the location of the given particle. The quantity 0u  in 

(4) is the time component of the four-velocity of a typical matter particle at the point where the 
volume integration is carried out. 
 

Our goal is the covariant expression of the relativistic momentum and angular momentum of the 

considered system of particles and four vector fields. Based on the Lagrange function and the 
conservation laws, we will represent the corresponding expressions in the following sections. Then 
we will describe the angular momentum pseudotensor, containing the system’s angular momentum 
and the vector defining the equation of motion of the system’s center of momentum. 

 
In addition, we will consider the definitions of the integral vector in the general theory of relativity 
and in the covariant theory of gravitation. This will allow us to understand the essence of the integral 
vector and its fundamental distinction from the four-momentum of the system. 

 

 
2. The momentum of the system 
 
The standard approach requires that, due to the uniformity of space, the properties of the physical 

system must not change under any parallel transfer of this system as a whole. We will briefly recall 
the derivation of the law of conservation of momentum, according to [1]. Suppose that the radius-

vectors of all the particles simultaneously change from 
n

r  to 
n

r ε , where ε is a certain constant 

infinitesimal vector. This leads to the variation of the Lagrange function of the following form: 
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The integral of motion is obtained from the arbitrariness of choice of ε and from the condition of 

equality of the Lagrange function’s variation to zero, and hence from the condition of equality to zero 

of the variation action as the integral of the Lagrange function with respect to the coordinate time. 

This leads to the expression 
1
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r
. Then the Lagrange equations are applied, which in our 

notation are written as follows: 
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.                                                                   (5) 

 
Substitution of the derivatives with respect to the radius-vectors by the derivatives with respect to the 

velocities with the help of (5) gives the following: 
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As a result, in the closed system the sum of the derivatives of the Lagrange function with respect to 
the velocities is conserved, which is considered as the momentum of the system: 
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Let us now take into account that the Lagrange function (1), according to [9], can be represented as 

the sum over all the system’s typical particles as follows: 
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Using (7) in (6) we will find: 
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The momentum (8), according to the definition in (6), is the system’s generalized momentum and is 
expressed in terms of the vector potentials of the fields acting on the system’s particles with masses 
n

m  and charges 
n

q, averaged over the volume of particles. Since outside the particles there is neither 

mass nor charge, the vector potentials of the gravitational and electromagnetic fields outside the 

particles do not contribute to the system’s momentum. The quantity 
n n n n n n n n n

m m q m   p U D A Π

represents in the sum (8) the momentum of one particle with the sequential number n. In the flat 

Minkowski spacetime, the vector potential of the acceleration field of an individual point particle 

equals U v , where  denotes the Lorentz factor, v is the particle’s velocity [3]. Hence we can see 

that the quantity P  in (8) really is the relativistic momentum, the contribution into which is made by 

the vector potentials of all the fields of the system. 
 

For the case of continuously distributed matter, the masses and charges of the particles should be 

expressed, respectively, in terms of the mass density and the charge density. Let us first take into 

account the expression for the time component of the particle’s four-velocity:

0 2
0 cdx c dt

u
ds ds

  . 

Then, to calculate the particle’s mass it is sufficient to take the integral over its volume in the reference 
frame associated with the particle: 
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If the particle is moving, the element of its volume changes due to motion. Therefore, when 
integrating over the moving volume, an additional factor appears inside the integral. For the mass 

and charge of the particle it gives the following: 
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Substituting (9) into (8) and passing from summation to integration, for the system’s relativistic 
momentum we find the following: 
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If the fields acting in the system cannot keep the particles in equilibrium with each other, the 

particles’ velocities can differ to such an extent that the shape of the system will begin to change. 

Despite this, the energy and momentum of the closed system are conserved. These quantities are part 
of the system’s four-momentum: 

 

,
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P
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On the other hand, the four-momentum is defined as the product of the system’s invariant inertial 

mass M  by the four-velocity u   of the point, called the center of momentum of the system: 
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where R  and V  specify the radius-vector and the velocity of the center of the momentum, 

respectively, dt is the coordinate time differential, d denotes the proper time differential at the point 

of the center of momentum. 
 

From comparison of (11) and (12) we can determine the velocity of the center of the momentum and 

the product of the system’s inertial mass by 
dt

d
: 

 
2c

E
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2

dt E

d c
M .                                         (13) 

 

The value 
dt

d
 for the center of momentum should be calculated after determining the metric in the 

system, since 
1 1

d ds g dx dx
c c

 
   , where ds is the interval, g is the metric tensor. After 

that, with known energy E the system’s mass M can be determined from (13). Thus, the system’s 

energy (4) and momentum (10) with the help of (13) allow us to reduce the system’s motion to the 
motion of the center of momentum. 
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With the help of the transformation of time and coordinates, we can turn from the reference frame S
, in which the motion of the physical system is considered, to the reference frame S  , in which the 

system’s momentum P  vanishes. Such a reference frame is called the center-of-momentum frame. 

As a rule, in S  the system’s energy E  has the minimum value, and the four-momentum is written 

as follows: , 0
E

P
c

     
 

. In this case, according to (13), we will obtain 
2

dt E

d c





M . In S  the 

center of momentum is fixed, and therefore the possible difference between the coordinate time t  and 

the proper time   at the center of momentum is caused only by the action of the fields. Thus, under 

the action of the gravitational field the proper time of the clock is delayed with respect to the time of 

the clock outside the field. 
 
In the limit of the weak field and low velocities, the metric transforms into the metric of the flat 

Minkowski spacetime, in which d  depends only on the velocity. In this case, with the help of (13) we 

can estimate both the Lorentz factor 
 
of the motion of the center of momentum and the system’s 

mass, expressed in terms of its energy and momentum: 
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3. The angular momentum of the system 
 
For a closed system that does not interact with the environment the isotropy of space should be 
manifested in the fact that some property of the physical system remains unchanged during an 
arbitrary rotation of the system as a whole in space. Similarly to [1], we will denote the vector of the 

infinitesimal rotation angle of the system relative to the arbitrary axis OZ  by  φ .The absolute 

value of this vector will equal  , and if we look at the system from the side of the arrow of the axis 

OZ  and at the same time increase the angle φ  as the system rotates counterclockwise, the vector 

 φ  will be directed along the axis OZ  by definition. 

 
To find the integral of motion it is necessary to rotate the system by the arbitrary angle  φ and to 

require that the variation of the Lagrange function L  in this case would vanish. Rotation of the 

system would result in the corresponding increments of the radius-vectors and particles’ velocities, 
expressed in terms of the vector products: 
 

[ ]
n n

  r φ r ,                   [ ]
n n

  v φ v . 

 
Here the second equality is obtained from the first one by differentiating with respect to the 
coordinate time, taking into account that  φ behaves as a constant. Besides it is assumed that the 

differential d  and the variation   do not depend on each other, so that the sequence of operations 

d   is equivalent to the sequence of operations d . The particles’ radius-vectors 
n

r  are measured 

from the origin of the reference frame, which is fixed on the rotation axis, consequently the particles’ 

velocities 
n

v are determined in the same reference frame. 

 
For the variation of the Lagrange function after the permutation of vectors in mixed products we 

obtain: 
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Now we’ll take into account (5): 
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Due to the arbitrariness of the vector  φ  it follows that the angular momentum vector is conserved 

in the closed system: 
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We will substitute the Lagrange function (7) into (14): 
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According to (15), contribution into the total angular momentum M is made by the vector potentials 
of all the fields, averaged over the volume of each particle of the system. At the same time the angular 

momentum of an individual particle is 

n n n 
   

M r p , where 
n

p is the relativistic momentum of this 

particle, so that the angular momentum M is obtained as the sum of the angular momenta of 
individual particles. 
For the continuously distributed matter, the masses and charges of the particles in (15) should be 

expressed in terms of the integrals over the particles’ volume with the help of (9), and from sums we 
should pass to integrals. For the angular momentum it gives the following: 

 

         0 1 2 3
0 0 0 0

1
q u g dx dx dx

c
           M r U r D r A r Π .          (16) 

 

The angular momentum (16) is calculated relative to the origin of coordinates of the selected reference 

frame. If the origin of coordinates is shifted, the radius-vectors r  change, so that the value of the 
angular momentum depends on the choice of the origin of the reference frame in contrast to the 

energy and momentum. Because of this the vector of the angular momentum M differs from the 
ordinary three-vectors and is called the axial vector that behaves like a pseudovector. 
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4. The angular momentum pseudotensor 
 

In the four-dimensional spacetime, three-vectors are replaced by four-vectors and the vector product 

of three-vectors corresponds to the operation of antisymmetric vector product of four-vectors. The 

angular momentum pseudotensor for one particle with the number n  as a rule is defined as follows: 

 
n n n n n

M x p x p      .                                                       (17) 

 
For the system of particles we should sum (17) over all the particles: 
 

1 1

p pN Nn n n n n

n n

M M x p x p     

 

 
   

 
  .                                          (18) 

 
The four-dimensional radius-vector of the instantaneous position of a particle with the Cartesian 

spatial coordinates has the form ( , , , ) ( , )x ct x y z ct   r  and in the general case is not a four-vector. 

Instead, the differential dx


 is a four-vector. As a result,  M 
 in (18) is not a tensor, but a 

pseudotensor, which depends on the choice of the reference frame. 
Comparison of the components of the pseudotensor in (18) and the components of the angular 

momentum’s three-vector (15) gives the following: 

 
12 21

zM M M   ,         
13 31

yM M M   ,        
23 32

xM M M   . 

 

This means that the components of the angular momentum M of the system of particles are the space 

components of the angular momentum pseudotensor M  . As for the time components of the 

pseudotensor 01 10M M  , 0 2 2 0M M   and 03 30M M  , they turn out to be the corresponding 

components of a certain three-vector C . Taking into account (8) and (18) we obtain: 

 

C
1 1 1

1 1p p pN N Nn n n n n

n n n

ct E ct E
c c  

     
        

     
  p r P r� .                                  (19) 

 

In this expression the quantity 
1 n

E
c

 represents the time component of the four-momentum of the 

particle with the number n , P is the system’s momentum. Let us introduce the radius-vector of the 

center of momentum of the system under consideration: 
 

1

1 pN n n

n

E
E 

 
  

 
R r .                                                           (20) 

 

Here the system’s energy E is defined in (3) in terms of the scalar field potentials and the field 
tensors. 

 
We note that the limit of weak fields and low velocities of motion of the system’s particles exists for 
(20). If the particles are neutral and interact weakly with each other by means of the fields, then in (3) 
we can neglect the second term in the form of an integral for the fields’ energy, and in the first term 

we can take into account only the scalar potential of the acceleration field 
2c  .Then the energy of 

one particle will be 2
n n n

E m c , and for the radius-vector of the center of momentum we can write the 

following: 
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1

1

p

p

N n n n

n
N n n

n

m

m









 
 
 
 
 
 





r

R . 

 

If we move on and neglect the Lorentz factors 
n

  of the particles, then the center of momentum turns 

into the so-called center of mass, the radius-vector COMR
 
of which will be equal to: 

 

1

1

p

p

N n n

n
COM N n

n

m

m





 
 
  





r

R R . 

 

Taking into account relation (20) in (19) and substituting the momentum P  with the help of (13) we 
find: 

 

C  
E

t
c

 V R� .                                                       (21) 

 

The vector C  is often called a time-varying dynamic mass moment. 

In a closed system the pseudotensor  M 
 in (18) must be conserved, and its components must be 

some constants. For the space components of the pseudotensor this results in conservation of the 

angular momentum: constM . From the equality of the pseudotensor’s time components and the 

components of the vector C in (21) it follows that it should be C   
E

t const
c

  V R� . It can be 

written as 0 t R R V , where the constant vector 0R  
specifies the position of the system’s center 

of momentum at 0t  .Thus, in this reference frame we obtain the equation of motion of the center 

of momentum at the constant velocity V . In this case, the physical system has the conserved energy

E , momentum P , angular momentum M and the angular momentum pseudotensor M  . The 

constancy of the velocity V  follows from the constancy of energy and momentum, according to (13). 

We will turn our attention to the expression for the vector C  in (19) and the definition of the radius-

vector R of the center of momentum (20). They contain the quantity 
1 n

E
c

, which specifies the time 

component of the four-momentum of a particle with an arbitrary number n. Thus, it is assumed that 

for each particle its four-momentum 
n

p   is fully known. But actually only the space component of 

the four-momentum 
n

p   is most easily determined in the form of the particle’s momentum 
n n n n n n n n n

m m q m   p U D A Π , since the vector potentials of the fields can be found from the solution of 

the fields’ equations. As for particle energy 
n

E , here we have a problem related to the field energy, 

which should be taken into account in 
n

E . Indeed, from the formula for the system’s energy (3) it 

follows that contribution into the system’s energy is made, with the help of the integral, by the fields 
– both inside the system and beyond its limits, up to infinity. Apparently the fields’ energy must be 

somehow included in the energy 
n

E  of each particle of the system, but it is not easy, since the fields’ 
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energy in (3) has an integral form and cannot be divided exactly into the contributions from 

individual particles. 
 

In this connection, at the first glance it seems that the definition of the radius-vector of the center of 

momentum (20) has a formal character. Nevertheless, with the help of it R can be satisfactorily 

estimated in case, when the fields’ energy is small in comparison with the energy of particles in the 
scalar field potentials acting on them. If the particles’ velocities are known, we can use the first 

relation in (13) and approximately find the particles’ energies with the known momenta. Similarly, if 

we know the masses and the quantities 
dt

d
 for each particle, then using the second relation in (13) 

we can estimate the energies of individual particles, and then substitute them into (20). All this gives 

the following for the radius-vector of the center of momentum: 
 

2

1

p
n

N n

n
n

c

E 

 
 
 
 


p

R r
v

,                          

2

1

pN n n

n
n

c dt
m

E d

 
  

 
 

R r .                    (22) 

 

For the case of the continuously distributed matter, all the sums included in the definition of the 
angular momentum pseudotensor are replaced by the integrals, since instead of the masses and 
charges of particles the products of the mass density and charge density by the volume of typical 

particles are used. In this case, the pseudotensor’s space components will be the components of the 

angular momentum M of the system of particles, according to (16). The pseudotensor’s time 

components are represented by the components of the vector C  and, according to (21), they remain 

unchanged. This follows from the definitions: 

 

d M x d P x d P    
    ,                   M x d P x d P    

   ,                  (23) 

 

where d  
denotes the differential of the integral taken over the volume, P

 is the four-momentum of 

the system (11). 

 

To complete the picture, we will express the time and space components of d P
  in (23) with the 

help of expressions for the energy (4) and momentum (10) of the system: 
 

 0 0 1 2 3
0 0 0 02

2 2 2
1 2 3

0

1 1

1 1
.

16 4 16 16

qd P d E u g dx dx dx
c c

c c c
Φ Φ F F u u f f g dx dx dx

c G
   

   

      

   

        

 
     

 

 

 

  0 1 2 3
0 0 0 0

1i
qd P d u g dx dx dx

c
         P U D A Π . 

 

Here the index  1, 2,3i
 specifies the space components of the system’s four-momentum, which are, 

respectively, the three components of the three-momentum vector P . In particular, for the Cartesian 

coordinate system  
1

xP P , 
2

yP P , 
3

zP P . 

 
To determine the radius-vector of the center of momentum in case of the continuous distribution of 
matter, in the first approximation, the second relation in (22) can be used. Taking into account that 
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01 n

n

dt
u

cd
 , where 0

n

u is the time component of the four-velocity of the particle with the number n, 

and passing from summation to integration, we find: 

 

0 2 1 2 3
0

1
( )u g dx dx dx

E
 R r .                                              (24) 

 

Here the system’s energy E  is given by relation (4). In the course of derivation of (22) we pointed out 
that the contribution to the energy of individual particles should also be made by the fields present in 

the system. This also applies to (24). The problem here is that the interacting particles themselves are 
not closed systems, but they are immersed in the common force fields acting on these particles at a 
distance and changing their energies and momenta. For an unclosed system in the external field in the 

form of a single particle inside the considered system of particles and fields, application of (4) for 
integration over the volume of this particle gives the energy of a part of the entire system of particles 
and fields in this volume, but not the energy of the particle as such. 
 

In this connection, we should refer to the initial formula (20) to estimate the radius-vector of the 
center of momentum. In order to simplify the situation, we will assume that the closed system under 

consideration has an axisymmetric configuration with respect to the energy distribution of the 
particles and fields. Then we can see that the resultant contributions of the fields, going beyond the 

system’s limits, into the value and direction of the vector  R  become zero due to the symmetry of the 

system configuration. No matter how the energies of the external fields change the particles’ energies 
n

E  in (20) as compared to the energies of free particles with the same particles’ motions, the value R
remains the same.  Therefore, in (20) it will suffice to take into account the particles’ energies in the 
scalar field potentials and the fields’ energies in the volume of typical particles. Passing from 

summation to integration over volume and using (4) we find the following: 
 

  0 1 2 3
0 0 0 0

2 2 2
1 2 3

0

1

1 1
.

16 4 16 16

q u g dx dx dx
cE

c c c
Φ Φ F F u u f f g dx dx dx

E G
   

   

      

   

      

 
     

 





R r

r

    (25) 

 
According to the above reasoning, for the axisymmetric configurations in (25) it is not necessary to 
integrate over the space outside the system, where there is no matter. 
 

On the other hand, we can imagine such physical systems, in which the main role is played by the 
energy of fields, rather than the energy of the matter particles. For example, the system can consist of 

a number of charged capacitors, in each of which there is a strong electric field. Each energy has 
inertia and the corresponding mass, so that the motion of the system with capacitors gives rise to the 
system’s momentum, and rotation of the system also causes the angular momentum. In this case, the 

second integral with the fields’ energies in (25) becomes of primary importance. Consequently, unit 
space volumes, containing fields both inside and outside the system up to infinity, can be considered 
as particles of a special kind, making their contribution to determination of the radius-vector of the 

system’s center of momentumR . This means that (25) should hold true not only for axisymmetric 

systems, but also for systems of any form. Therefore, in the general case, integration in the second 
integral in (25) should be carried out over the entire infinite volume. 

 

These arguments can be extended to the expressions for the energy E  in (4), for the momentum P  

in (10) and for the angular momentum M in (16), in case of continuous distribution of matter. In this 
case, these expressions actually become additive integrals of motion, since each small part of space in 
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them contains either matter and fields or only fields, and makes its contribution into the system’s 

integrals of the motion. 
 
5. The situation in the general theory of relativity 
 
Being a tensor theory, the general theory of relativity (GTR) differs significantly from the vector 
covariant theory of gravitation (CTG). Firstly, the gravitational field in GTR has neither its own four-

potential nor the field tensor; instead of it all gravitational effects are expressed in terms of the metric 
tensor and its derivatives. Secondly, the acceleration field in GTR is presented not as a vector field, 
but as a simpler scalar field, and it does not have its own tensor either. This can be seen from the 
Lagrange function used in GTR [10]. In our notation this function is written as follows: 

 

2 1 2 3
0

0

1
2

4
GR pL c k R c k c A j F F g dx dx dx L 

 


 
        

 
 .            (26) 

 

Here, � = −
��

����
= −

�

���
 where μ is the Einstein’s gravitational constant. 

In (26) the last term pL  specifies the contribution into the Lagrange function from the elastic energy of 

matter, and if this energy is associated with the pressure field, then, as a rule, this field is considered 
in GTR not as a vector field, but as a simple scalar field. 
By definition, the four-velocity is gauged in such a way that 

2 2dx dx
u u g u u c g c

ds ds

 
  

     , so that hence the definition follows for the square of the 

interval in the form 
2ds g dx dx 

 . In this connection, the scalar invariant quantity 
2

0c  
in (26) 

can also be written as 
0c g u u 

 [11, 12], while in [8] and [13] the product c g J J 
  is 

used for this, where J 
 is the mass four-current. In contrast to this, instead of the quantity 

2
0c , in 

the framework of CTG we use in (1)  the acceleration field invariant in the form of U J 
 ; in this 

case the vector nature of the acceleration field is emphasized by the additional invariant 
2

16

c
u u



 , which contains the acceleration tensor u . 

 
Let us now consider how the relativistic energy, momentum and angular momentum of the system of 

particles and associated fields are calculated in GTR. Thorough analysis shows that in GTR there are 
no formulas that determine the given quantities in the curved spacetime in an exact and covariant 

way. We have already referred to the articles [6, 7], which prove the impossibility of unambiguous 
calculation in GTR of the energy and mass of any arbitrarily chosen small part of the system. First of 
all this is due to the fact that in GTR the gravitational field is represented in the Lagrange function not 

directly, but indirectly, through the scalar curvature R , expressed in terms of the metric tensor and 

its derivatives. To estimate the contribution of the energy and the energy flux of the gravitational field 
in the generalized Poynting theorem, the corresponding stress-energy tensor should be used for the 
system under consideration. However, instead of it, we can only find the stress-energy pseudotensor 

of the gravitational field, usually for the case when the cosmological constant   is zero. In this case, 
the form of this pseudotensor cannot be unambiguously defined. For example, the Einstein 

pseudotensor t   is well-known, which, according to [14], in sum with the stress-energy tensor T 
  

of matter and non-gravitational fields should give the conservation law of the following form: 

 

  0T t g 
  
     

.                                                     (27) 
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It is assumed that integration over the infinite three-dimensional volume of the tensors’ time 

components in (27) leads to the four-momentum of the system with regard to the contribution of the 
energy and momentum of the gravitational field: 

 

 0 0 1 2 31
( )EJ T t g dx dx dx

c
     .                                            (28) 

 

The index E  in ( )EJ  
shows that the integral vector J  is calculated with the help of the Einstein 

pseudotensor. 

 
As is indicated in [13], in the general case it is impossible to fulfill simultaneously two conditions for a 

closed system with the help of the quantity ( )EJ : 

1) conservation over time of the sum of all the types of energy, including the gravitational energy 

defined by the pseudotensor t  ;  

2) independence of the sum of all the types of energy at a given time point from the choice of the 
reference frame. 

 

In addition, unlike the tensor T 
 , the pseudotensor t   is asymmetric and therefore the integral 

vector ( )EJ  cannot be used to calculate the relativistic angular momentum of the system. To solve 

this problem Landau and Lifshitz invented [15] the symmetric gravitational field pseudotensor t , 

so that the following relation holds true: 
 

  ( ) 0T t g 

     

.                                                      (29) 

 

The integral over the infinite volume gives the following: 
 

 0 0 1 2 31
( ) ( )LLJ g T t dx dx dx

c
     .                                           (30) 

 

It is assumed that the integral vector ( )LLJ 
 is also the system’s four-momentum. To substantiate 

this conclusion, we need to send the pseudotensor t  to zero in (30), then ( )LLJ 

 
would tend to the 

system’s four-momentum without taking into account the contribution of the gravitational field. In 

this case, it seems that  ( )LLJ 

 
should give the four-momentum with regard to the contribution of 

the gravitational field. 

 
Landau and Lifshitz also find the system’s angular momentum with the help of the integral over the 
infinite volume. To do this, they determine the four-dimensional pseudotensor of the angular 

momentum as the integral over the volume taken of the vector product of the current four-

dimensional radius-vector by the integral vector ( )LLJ 

 
differential associated with a given point in 

space: 
 

     0 0 0 0 1 2 31
( ) ( ) ( )LL LLM x d J x d J x T t x T t g dx dx dx

c
                    .     (31) 

 

The need to integrate over the infinite volume in (28), (30) and (31) is related to the fact that the 
gravitational field pseudotensor does not specify the unique distribution of gravitational energy and 

momentum in the considered physical system, which does not depend on the choice of the reference 
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frame. It is assumed that integration over the entire volume allows us to minimize the possible 

inaccuracies arising from this circumstance. At the same time, by choosing the appropriate reference 
frame we can achieve that at infinity the metric of the physical system would turn to the metric of the 

flat spacetime. In this case, the pseudotensor t vanishes at infinity, as it should be for the 

gravitational interaction. 

In case if the cosmological constant   is taken into account in (26), in (29) the gravitational field 

pseudotensor t  should be replaced by t g 


ù
, and the corresponding additions should be 

made  in (30) and (31). Similarly, according to [16], the pseudotensor t

  

in (27) should be replaced 

by t g 
 




ù
, and in (28)  

0t  should be substituted by 0 0t g 




ù
. 

 

The above-mentioned pseudotensors of the gravitational field contain only the metric tensor and its 
first-order derivatives. In theory it is possible that there are many other gravitational field 

pseudotensors, which, summed up with the stress-energy tensor T  , could give the conservation 
laws similar to (27) or (29). We will not go deep into the history of this problem and describe other 

known pseudotensors, since our goal was to illustrate the very fact of ambiguity in the choice of 

pseudotensor for the conservation law in GTR. References to other pseudotensors and related 
problems can be found, for example, in [17]. 

 
In opinion of the authors in [18], who analyzed the conservation law (27), if the necessary conditions 

(integration over the infinite volume, the system “being immersed” into the Minkowski space at 

infinity) are met, the quantity ( )EJ  
in (28) must be identically equal to zero and therefore cannot be 

the four-momentum and specify the inertial mass of the system. They also pay attention to different 

transformation laws for the matter tensor T 
  and the gravitational field pseudotensor t  . This 

should lead to different values of ( )EJ  in different reference frames, which contradicts the condition 

of independence of the physical system’s inertial mass from the choice of the reference frame. In 

connection with this, in [7] such quantities as ( )EJ  
in (28) and ( )LLJ 

 
in (30) are considered not as 

four-vectors, but as pseudovectors. In [6] it is emphasized that GTR does not satisfy the 
correspondence principle in the sense that the expression for the inertial mass in the general case in 

the limit of the weak field and low velocities does not go over to the corresponding expression in the 
Newton’s theory. According to [19], the correspondence principle in GTR is not satisfied for all the 

additive integrals of motion, including energy, momentum, and angular momentum. 
 
The considerations presented above raise doubts that in the general theory of relativity it is possible 

to uniquely determine the energy, momentum, inertial mass and momentum of the considered 
physical system. At least it is absolutely impossible in case if it is necessary to calculate these 
quantities for an individual arbitrarily chosen internal part of the system. We will return to the 
discussion of this question in the conclusion of this paper, after presentation of the integral vector 

from the perspective of the vector field theory. 
 
6. The integral vector 
 
The equation used to find the metric tensor components in the covariant theory of gravitation for the 
tensors with mixed indices has the following form [9]: 

 

 1 1

4 2
R R U W B P

ck
     
           .                                    (32) 
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here R 
  is the Ricci tensor with mixed indices; 


  is the unit tensor or the Kronecker symbol; U 



, W 
 , B 

 and P 
  

are the stress-energy tensors of the gravitational and electromagnetic fields, 

acceleration field and pressure field, respectively. 

 

With the help of the covariant derivative   we can find the four-divergence of both sides of (32). 

The divergence of the left-hand side is zero due to equality to zero of the divergence of the Einstein 

tensor, 
1

0
2

R R 
  
 

   
 

, and also as a consequence of the fact that outside the body the 

scalar curvature vanishes, 0R  , and inside the body it is constant. The latter follows from the gauge 

condition of the energy of the closed system. The divergence of the right-hand side of (32) is also zero: 
 

  0U W B P T    
             .                                         (33) 

 

The tensor T


 with mixed indices represents the sum of the stress-energy tensors of all the fields 

acting in the system. Expression (33) for the tensors’ space components is nothing but the differential 
equation of the matter’s motion under the action of forces generated by the fields, which is written in 
a covariant form. As for the tensors’ time components, for them expression (33) is the expression of 

the generalized Poynting theorem for all the fields. 
 

If we could integrate (33) over the four-dimensional volume, then as a result an additive integral of 
motion could be obtained. In this case it should be taken into account that the situation inside and 

outside the particles or inside and outside the continuously distributed matter differs significantly. 
Indeed, in the space where there is no matter, there are only the electromagnetic and gravitational 

fields. In the matter the acceleration field and the pressure field are also acting. Therefore, integration 

over the volume in (33) should be divided into two parts, one integration over the volume for the 
matter particles (or for the typical particles of continuously distributed matter), and the second one 

for the space outside the matter. 

Since T 
 is a symmetric tensor, its covariant derivative has the following representation: 

 

 1 1
0

2
T g T T g

g

  
           


.                                   (34) 

 
Since gravitation is considered in the covariant theory of gravitation as an independent entity that 
does not require justification through the metric, the gravitational effects do not disappear even in the 
flat Minkowski spacetime. The same is true for the electromagnetic field and its effects. In Minkowski 

spacetime, the metric tensor g does not depend on the coordinates and time, and 0g   , as 

well as 1g  . Consequently, (34) is simplified and in the weak field and at low velocities of 

particles we can write: 
 

0T T 
       . 

 

This expression can be integrated over the four-volume, taking into account the Gauss’ theorem: 

 
0 1 2 3J T g dx dx dx dx T dS 

         , 
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where dS  denotes an element of some three-dimensional hyper surface that surrounds the four-

volume under consideration. 
 

In a closed system, the integral vector J  must be constant. In order to get a general idea of the vector 

J  
it is enough to determine its instantaneous value at 0x const . For example, if 

0x ct , we can 

take the initial time point 0t  . In the standard gauge, the origin of time and the origin of space 

coordinates at the initial time point (the center of momentum of the closed physical system, moving at 

velocity V ) intersects the origin of the observer’s reference frame. Then for the integral vector we can 

write the following: 
 

0 0 1 2 3
0(0)J T dS T dx dx dx const      .                                       (35) 

 

Let us now consider the simplest macroscopic physical system in the form of a sphere, which is filled 
with randomly moving charged typical particles so densely that the approximation of continuous 

medium can be applied. These particles are held inside the sphere by the gravitational field. We will 
now use the solutions known for such a system in the framework of the relativistic uniform model 

that takes into account the vector gravitational and electromagnetic fields, as well as the acceleration 

field and the pressure field. Let the origin of the reference frame be at the center of the sphere, so that 

we will search (0)J  
in the reference frame where the sphere is stationary. 

 
If we take into account the randomness of the typical particles’ motion in each sufficiently large 

volume element, then we can see that the global vector potentials of all the fields inside and outside 
the sphere on the average are equal to zero. This leads to the fact that all the global solenoidal vectors 
are also equal to zero, and in particular the magnetic field and the gravitational torsion field on the 

average are equal to zero, according to the covariant theory of gravitation. Consequently, in the given 
physical system, which is stationary relative to the selected reference frame, there are no energy 

fluxes (momentum fluxes) of the fields, calculated with the help of the vector products of the field 
strengths by the corresponding solenoidal vectors. 

 

In view of (33) 
0 0 0 0 0T U W B P        , while at the index  values 1, 2,3i  the components 

0
iT

are proportional to the sums of the energy fluxes of individual fields. In the case under consideration, 
the fields’ energy fluxes, such as the Poynting vector or the similar Heaviside vector for the 

gravitational field, are absent, and in (35) only one nonzero time component of the integral vector is 

left at the index value 0  : 

 

 0 1 2 3 0 0 0 0 1 2 3
0 0 0 0 0 0(0)J T dx dx dx U W B P dx dx dx const       .                 (36) 

 

We will now take into account the explicit expressions for the stress-energy tensors of the 
gravitational field [2], [8], the electromagnetic field, the acceleration field and the pressure field [3], 
[9], derived from the principle of least action: 
 

2 1

4 4

c
U g g g Φ Φ

G
       

     


 
    

 
, 

 

2
0

1

4
W c g g g F F       

      
 

   
 

, 
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2 1

4 4

c
B g g g u u       
     



 
   

 
, 

 
2 1

4 4

c
P g g g f f       
     



 
   

 
.                                     (37) 

 

As we can see from (36) and (37), in order to obtain 0(0)J  it is necessary to integrate over the volume 

the sum of the time components of the stress-energy tensors of all the fields, that is, the sum of the 

energy densities of these fields. In the flat Minkowski spacetime and at zero solenoidal vectors, the 
fields’ energy densities depend only on the strengths of the fields, which are part of the tensors of the 

corresponding fields. For example, in case the magnetic field is equal to zero the electromagnetic 

tensor F  
depends only on the electric field strength E , and the following expression is obtained 

for the energy density of the electromagnetic field: 0 20
0

2
W E


 . 

 
Likewise, for the energy densities of the gravitational field, the acceleration field and the pressure 
field at solenoidal vectors equal to zero, we obtain [9], [20]: 

 

0 2
0

1

8
U

G



  ,            

0 2
0

1

8
B S


 ,            

0 2
0

1

8
P C


 ,                         (38) 

 

where Γ , S and С denote the strengths of the gravitational field, the acceleration field and the 

pressure field, respectively. In this case, the expressions for the field strengths inside the sphere in the 

spherical coordinates depend only on the current radius r , and the radial components of the field 
strengths have a similar form [21]: 

 

2
0

0 02

0

4
sin 4 cos 4

34
c c

inside

Gc G rc r r
r

r c c

   
    

  

    
        

     
, 

 

2
0 0

0 02
0 0 00

sin 4 cos 4
4 34

q c q c

inside

c rc r r
E r

r c c

   
   

    

    
      

     
, 

 

2
0

0 02

0

4
sin 4 cos 4

34
c cc rc r r

S r
r c c

  
   

 

    
      

     
, 

 

2
0

0 02

0

4
sin 4 cos 4 .

34
c cc rc r r

C r
r c c

    
   

  

    
      

     
 

(39) 
 

In (39) c  
is the Lorentz factor of the typical particles that are in motion at the center of the sphere. 

Substituting (39) into (38), and substituting the results into (36), we find inside the sphere by 

integrating over the volume in the spherical coordinates the following: 
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22
0 2 2 1 2 3

0 02
0 0

2
(0)

9 4

qc
insideJ G r dx dx dx const

 
  

 

 
       

 
 .                 (40) 

 
As was found in [22], by virtue of the equation of motion of the typical particles inside the sphere, in 
the case under consideration the following relation holds true: 

 
2
0

2
0 0

0
4

qG


 
 

     . 

 
If we take this expression into account in (40), we can see that the time component of the integral 

vector inside the sphere vanishes: 0(0) 0insideJ  . 

The radial components of the strengths of the gravitational and electromagnetic fields outside the 

sphere with radius a are equal [20]: 

 

2

0 02 2

0

sin 4 cos 4
4

gc
outside

GmGc c a a
a

r c c r


    

  

    
        

     
, 

 

2
0

0 02 2
0 0 00

sin 4 cos 4
4 44

q c b
outside

c qc a a
E a

r c c r

 
   

    

    
      

     
, 

(41) 

 

where gm  
is the gravitational mass of the system, bq  

is the total charge of the system. In this case, the 

inertial mass M of the system in (13) differs from the gravitational mass gm . This is due to the fact 

that the inertial mass M  is calculated through the relativistic energy of the system (4) by formula 

(13) and takes into account the contributions from all the particles and fields of the system, while the 

gravitational mass gm  is equal to the total mass bm  of the particles from which the system was 

formed. Likewise, the charge bq  is the total charge of the particles from which the system was 

formed. 

With the help of (41) we can calculate the expressions for 
0

0U and 
0

0W  in (38). Substituting these 

tensor components into (36), for the time component of the integral vector outside the sphere we find 

the following: 

 

2 22 2
1 2 3

0 2 4
0 0

1
(0)

8 32 2 8

g gb b
outside

Gm Gmq q
J dx dx dx const

r a a   

 
        
 

 .            (42) 

 
Adding up (40) and (42), for the time component of the integral vector we have: 

2 2

0 0 0

0

(0) (0) (0)
2 8

g b
inside outside

Gm q
J J J

a a
     .                               (43) 
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Now we can understand the essence of the integral vector (0)J  in (35). This vector, which is an 

integral over the four-volume at the initial time point taken of the equation of motion written in the 
form of (33), shows the distribution of the energy and energy fluxes in the closed system. When the 

system as a whole is moving relative to the external observer, the vector J  
is a function of 

coordinates and time, the same applies to the potentials and strengths of all the fields. If the origin of 

the reference frame is moving synchronously with the center of momentum, then in such a reference 

frame the integral vector (0)J J 
 
depends only on the internal motion of the particles and fields 

of the physical system. The vector (0)J  obtains the simplest form in case if the center of momentum 

always coincides with the origin of the reference frame, that is, at the center of momentum. 

 
According to (43), in the physical system, which is stationary on the average, when there are no global 

mass and charge currents in the matter, only the time component 0(0)J  of the integral vector is not 

equal to zero. In this case, within the framework of the relativistic uniform model, 0(0)J
 
is equal to 

the sum of the energies of the gravitational and electric fields outside the matter. As for the volume 
inside the system’s matter, here the sum of contributions of the energies of all the fields vanishes. For 

the nonzero space components 0 1 2 3(0)i iJ T dx dx dx   of the integral vector to appear in (35) at 

index values 1, 2, 3i  , some stationary motion of the matter and fields is required, for example, 

general rotation, volume pulsations or mixing of matter. In this case, solenoidal vectors and the fields’ 
energy fluxes appear in the system. 

It is obvious that in the long-term perspective the integral vector (0)J  
will not be conserved over 

time even in a closed system if it does not take into account the contribution of the vector dissipation 

field, as it was done, for example, in [4]. In real systems, there is always dissipation of energy and 
transformation of the energy of motion of the particles’ fluxes into thermal energy. This leads to a 

change in the state of the matter fluxes in the system until the equilibrium state is achieved, when the 

gradients of the matter particles’ velocities in the adjacent fluxes reach the minimum. At the same 
time, there is a change in the fields’ energy fluxes, and, consequently, in the integral vector’s 

components. 
 
7. Conclusion 
 

The initial point of our reasoning in the definition of additive integrals of motion was the expressions 
for the Lagrange function (1) for the continuous distribution of matter, as well as for the Lagrange 
function (7) in case when the matter consists of individual particles. With the help of these 

expressions, using the standard procedure we find formulas (3) and (4) to determine the relativistic 

energy E  of the system for the case of individual particles and for the case of continuous distribution 

of matter, respectively, formulas (8) and (10) to determine the relativistic momentum P , formulas 

(15) and (16) to determine the relativistic angular momentum M. With the help of the energy E  and 

the momentum P  it becomes possible to determine the system’s four-momentum P  in (11). 

 

Since the angular momentum M depends on the choice of the reference frame, it is a three-

dimensional pseudovector. Similarly, the angular momentum tensor M   in (18) and in (23) is 
actually a four-dimensional pseudotensor, since it contains both the components of the pseudovector 

M and the components of the vectorC   in (21). The vector C defines the equation of motion of the 

center of momentum of a closed system at a certain constant velocity, while the radius-vector R of 

the center of momentum is determined in a covariant form in (25). 
 
In section (5) we briefly describe how the integrals of motion are defined in the general theory of 

relativity (GTR).Analysis of the situation shows that in GTR the system’s energy depends on the 
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stress-energy pseudotensor of the gravitational field, the values of which at each point depend on the 

choice of the reference frame. Moreover, the existence of many different forms of the stress-energy 
pseudotensor of the gravitational field suggests that in GTR it is impossible to uniquely calculate the 

energy in any given small volume inside the system. Nevertheless, it is asserted that the integral 
vectors such as (28) or (30) obtained by integration over the infinite volume give the energy and 

momentum of the system. Unfortunately, this heuristic conclusion does not follow from the standard 
procedures and the physico-mathematical logic of the field theory. 

 
Indeed, in order to show that the integral vector in the weak-field limit tends to the four-momentum 
of the system, it is necessary to send the gravitational field pseudotensor to zero, and to send the 

curved spacetime metric to the Minkowski spacetime metric. In this limiting case, according to GTR, 
the gravitational effects must disappear completely, and all physical systems must behave like inertial 

reference frames. Thus, the ideal inertial frames in GTR must be without mass and charge, otherwise 
they would generate gravitational and electromagnetic fields, and therefore the metric tensor would 

also change. 
 

Now we can raise a question: is it actually possible to send the gravitational field pseudotensor to 
zero in any system at all? Apparently, it is possible only if at the same time we remove from the 
system the matter that carries the mass and charge. But when the pseudotensor is zeroed, neither 

mass nor charge would remain in the system, nor the four-momentum of the system would become 
equal to zero. But this is the only state of the system, in which we can be absolutely sure. If the system 

has both the mass and the gravitational field pseudotensor, then there are no guarantees that the 
integral vector in GTR defines precisely the four-momentum of the system. 
 
In addition, in GTR the pressure field is used not as a vector field, but as a scalar field, and the same 

applies to the acceleration field. As a result, in GTR the energy and energy fluxes of these fields are 
not fully taken into account in the integral vector.  Meanwhile, at equilibrium, the gravitational and 
electromagnetic fields, the acceleration field and the pressure field in the matter inside the system, 

which is stationary in general, are such that they completely balance each other. This means that all 
the forces applied to each typical particle of matter on the average are equal to zero. Moreover, our 

approach, in view of the covariant theory of gravitation and the four acting fields, shows that in the 
matter the sum of the energies of all the fields, as well as the time component of the integral vector 

0(0)insideJ  become equal to zero, according to (40).Only the energy of the fields (43) that go out of the 

system beyond the matter’s limits contributes to the integral vector of such a system. As a result, the 

integral vector is associated with the energies and energy fluxes in the system, but not with the four-
momentum of the system. The same must be true for the integral vector in GTR, since it is also 

obtained by integrating over the four-volume of the divergence taken from the stress-energy tensor of 
the matter and non-gravitational fields with addition of the gravitational field pseudotensor. In this 

connection, consideration of the integral vector as the four-momentum in GTR in our opinion is 
wrong. Other problems, associated with considering the integral vector as the four-momentum in 
GTR, are described above in Section 5 with the appropriate references. 

 

The difference between our integral vector (0)J  and the four-momentum P
 is significant and 

consists in the fact that in the center-of-momentum frame the system’s momentum P  and the space 

vector component P  are equal to zero and reflect the motion of the matter’s particles in the vector 

field potentials. This follows from the definition of P  in (8) and in (10), where either mass and 
charge or the densities of mass and charge of the particles are present. As for the space vector 

component of the integral vector (0)J , it is associated with the motion of the fields rather than 

particles, that is, with the fields’ energy fluxes contained in the stress-energy tensors of the fields. The 

same can be said about the time components – if in P
 the time component is associated with the 

relativistic energy of the particles in the scalar potentials with the addition from the fields’ energy, 

then in (0)J  the time component is calculated using the energy densities contained in the stress-



Bulletin of Pure and Applied Sciences/ Vol. 37-D (Physics), No .2 / July-December 2018 

[85] 
 

energy tensors of the fields. As we can see, the methods of calculation of P
 and (0)J  differ 

significantly from each other: in order to find P  we need the four-potentials of the fields, and in 

order to find (0)J  in (35) we necessarily need the stress-energy tensors of all the fields. It turns out 

that the difference between (0)J  and P
 is due to the fundamental difference between particles and 

fields; they cannot be reduced to each other, although they are interrelated with each other. 
 

Another peculiarity is that in an arbitrary reference frame the system’s momentumP , as well as the 

space vector component P  are no longer equal to zero and reflect the property of inertia as 

resistance to the force changing the momentum P . And what is the meaning of the space vector 

component of the integral vector (0)J  in an arbitrary reference frame? Since (0)J  
is the integral 

vector J  taken at the initial time point, it reflects only the configuration of the energy and the fields’ 

energy fluxes of the system at this time point and the corresponding fields’ momentum. For example, 

we can take a rotating body that, when moving as a whole, has not only the four-momentum P , but 

also has the integral vector (0)J  
with nonzero space components due to the fields’ energy fluxes 

arising from rotation and linear motion. In this case, in the closed system at equilibrium the fields’ 
energy fluxes in the matter and beyond its limits become closed. 

 
Finally, it should be mentioned that the integral vector in principle cannot be the system’s four-vector 
and four-momentum. This follows from the fact that according to (12) the four-momentum can be 

defined as the product of the system’s inertial mass by the system’s four-velocity: P U M . This 

definition is valid in any reference frame. However, such a definition for the integral vector is 
unsuitable. The basis of the proof here is the so-called 4/3 problem. The essence of the 
electromagnetic field is that the field’s mass-energy of the moving charged body, calculated at the 

initial time point by integrating the component 
0

0W  of the stress-energy tensor of the electromagnetic 

field over the volume, is approximately 4/3 times less than the field’s mass-energy, calculated in the 

initial time point by integrating the space components 
0

iW  of the stress-energy tensor over the 

volume. 

 
The existence of the 4/3 problem, that is, non-coincidence of the above-mentioned mass-energies, 

stems from the fact that the four time components of the stress-energy tensor of the electromagnetic 
field do not constitute any four-vector in total, and they are transformed from one reference frame to 
another by the tensor law rather than by the vector law. The same is true for the gravitational field in 

the covariant theory of gravitation [23], and for any vector fields with the four-potential in general. 
Since the integral vector is the integral over the volume of the sum of the time components of the 

fields’ stress-energy tensors, the integral vector is not a four-vector either. This can be proved directly, 

for which it is sufficient to recalculate the time component 0(0)J  in (43), but already for a moving 

system at the initial time point. This component of the integral vector will increase due to the system’s 

motion at velocity V  by a factor of about
3

2
1

3

V

c


 
 

 
, where 

 
is the Lorentz factor. At the same 

time, the system’s energy, which is part of the time component of the four-momentum P , under the 
same conditions will increase only by a factor of  . 

 

Consequently, the integral vector (0)J  in (35) is a four-dimensional pseudovector, but not the 

system’s four-momentum. Indeed, the integral over the volume of the differentials of four-
momentum can give the four-momentum of the system, but this cannot be expected from the integral 
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over the volume of the time components of the system’s stress-energy four-tensor, due to different 

transformation laws for four-vectors and four-tensors of second order. 

The fact that the integral vector (0)J  is a four-dimensional pseudovector makes it close in the 

meaning to another additive integral of motion of the system and to a three-dimensional 

pseudovector, namely the angular momentumM. If desired, like Landau and Lifshitz with the help 

of (0)J  
we could introduce the momentum pseudotensor of the integral vector, similarly to (31). 

However, according to the foregoing, this pseudotensor would not be equal to the system’s angular 

momentum pseudotensor M   in (18) and (23), but would characterize only the angular momentum 
of the fields’ energy fluxes. 
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