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INTRODUCTION 
 
Different rare-earth compounds show mixed-valence phenomena. They are well studied both 
theoretically and experimentally [1]. An electronic phase transition driven by an alteration of 
temperature or pressure is observed in Cerium compounds [2].The 4f-shell loses its stability 
while in several ways maintaining its atom-like character in these compounds. The energy 
difference between states having different f-electrons per site (like states 4fn and 4fn-1plus one 
conduction bande-) is very small. This induces resonance transitions between these two states. 
That’s why, f-electrons become partial band in nature and the average number of f-electrons 
per site (valence) turns non-integral in value. Thus the non- integral valence makes the 
properties of mixed-valent compounds anomalous.  
 
The mixed-valent states can be either homogeneous or inhomogeneous. The ionic valence 
changes both in time and space in homogeneously mixed-valent state (HMVS). This HMVS is 
observed experimentally in samarium compounds with the valence of Sm fluctuating 
between 2 and 3. 

Abstract 
 
The role of Hubbard type interaction between d-electrons has been studied using a 
four-site extended Falicov-Kimball model. A discontinuousvalence transition has been 
observed. Specific heat curves show a double-peak structure for E<Ec. Theeffect of this 
interaction on entropy has also been examined. A Curie contribution to susceptibility 
is noticed.   
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The experiments performed with these compounds so far are the experiments of the specific 
heat [3], the electrical resistivity [4], the Hall coefficient [5] and the optical reflectivity. All 
these establish that the MV compounds are paramagnetic semiconductors with an energy gap 
at low temperatures but they act as ‘poor metals’ without any energy gap at high (room) 
temperatures. X-ray diffraction technique performed under high pressure shows that mixed–
valent compound SmS has a lower gap of energy in metallic phase and thus does not act as a 
simple metal [6]. Nuclear forward scattering experiments [7] with SmSindicates first order 
phase transition induced by pressure from a nonmagnetic to magnetic state. 
 
The homogeneous mixed-valent compounds have unique electronic properties for the 
coexistence of strongly correlated atomic- like f-levels and the wide sd bands at or near the 
chemical potential [8]. This coexist-nature makes difficulty in theoretical calculations. Energy 
band calculations can’t establish whether ground states of SmS and SmB6 are metallic or non-
metallic under pressure. But the ground state of LaB6 [9] is definitely metallic both 
experimentally and theoretically as the chemical potential lies within the wide sd bands. 
 
Many theoretical investigations have been performed so far to clarify the anomalous 
properties of the MV compounds. The theoretical models used to describe MV states are 
Periodic Anderson Model (PAM), Falicov-Kimball model (FKM), extended Falicov-Kimball 
model (EFKM) [10, 11], and PAM extended by f-d Coulomb repulsion. 
 
FKMis the most widely used statistical model for describing the ground state properties of 
the rare-earth and transition metal compounds [12]. Falicov and Kimball introduced this 
model in 1969. This FKM has two separate types of electronic states for a given material- one 
is highly correlated localized ion like state and the other is uncorrelated, extended Bloch-like 
state. Between a conduction electron and a localized 4f electron at the same lattice site, this 
model considers a coulomb repulsion. A change in occupation numbers of these electronic 
states results the metal-insulator transition. The approximations play important role [13] in 
most of the works. 
 
FKM [14] extended by various interactions [11, 15, 16] has been studied extensively to explain 
zero and room temperature properties of MV systems. Electron- phonon interaction (EPI) 
induced hybridization [10, 15], Correlated hopping interaction [16], nonlocal Coulomb 
interaction, spin dependent exchange interaction [17] play some vital roles in MV 
phenomena. These interactions induce insulator to metal transition at certain f-level energy 
[16]. 
 
In this present work, we have considered the Hubbard type interaction between spin-up and 
spin down d-electrons (Udd). This term has been omitted in most of the previous works related 
to FKM. According to Lemanski [18], the larger time electrons stay the same site, the 
interaction between them becomes more important. So, the on-site Coulomb interaction (U) 
and the f-d Coulomb interaction (G) are always larger than this interaction between itinerant 
d- electrons (Udd)Farkašovský showed that [19], when the spin-dependent interaction between 
localized (f) and itinerant (d)elections (G) is strong enough (G>4), the effect of Uddis small on 
the ground state of EFKM. Thus this term can be neglected when the f-d interaction (G) is 
large. But Uddterm reveals very strong effects when the strength of the f-d Coulomb 
interaction (G) is small or intermediate. So we consider small f-d interaction (G=1) and also 
intermediate on site Coulomb interaction (U=2) to study the role of the Hubbard type 
interaction between d electrons (Udd). The value of this interaction (Udd)is taken of the order of 
0.5 and smaller. 
 
We have taken a two-band FKM Hamiltonian extended by Hubbard type interaction between 
spin up and spin down d- electrons (Udd) in this paper. A 2D square 4 site cluster (Fig. 1) is 
considered to investigate the importance of this Hubbard type interaction (Udd) in valence 
transition, entropy, specific heat and susceptibility of the MV systems. 
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Figure 1: A four-site lattice 

 
 
FORMULATIONS 
We have considered the following model Hamiltonian in this problem 
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Where <i, j> represent all pairs of nearest-neighbor (NN) sites on the simple two dimensional 
square lattice,the usual fermion operators for f and d electrons are denoted byfiσand diσ 
respectively (σ, σ’ = spin).E is the f-level energy, G denotes the strength of f-d Coulomb 
interaction, V is the f-d hybridization interaction U represents the on-site Coulomb 
interaction; and the last term t is the kinetic energy which corresponds to quantum 
mechanical hopping of the itinerant d-electrons between NN sites.Udd is theHubbard type 
interaction between spin up and down d- elections. 
 
A two dimensional four-site model has been considered to perform exact diagonalization 
method. This four site representative spin state is taken as in Ref. [16].      
 
Here∑ (< ݊௜ఙ

௙ > +	<௜ఙ ݊௜ఙௗ >) = 2.0, i= spin index and σ = spin. 
 
There are altogether 120 basis states and the ground state is a linear combination of these 
basis states. 
 
We have calculated the f-electron density < ݊௜

௙ >	= 1/ ௌܰ∑ ௜݂ఙ
ற

௜݂ఙ௜ఙ  and f-d inter-site correlation 
functionܥ௙ௗ =< ௜݂ఙ
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௝݀ఙ >. Ns= the number of lattice sites. 

 
 The entropyper lattice site is  
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The low temperature specific heat is given by 
 
ܥ = ݇஻ߚଶ
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Where= ∑ ݁ିఉாഀఈ , the sum exists over all theeigenstates, Eα’s are the eigenvalues, and  ߚ =
ଵ

௞ಳ்
, ݇஻being the Boltzmann constant ( taken unity to  simplify our calculations). 

 
Spin susceptibility for f-electrons is represented by 
߯ = ߚ < (݊௜↑

௙−݊௜↓
௙ )ଶ >(4) 

 
RESULTS AND DISCUSSIONS 
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Figure 2: <nif> vs. E for different values of Udd. 

Here U=2.0, V=0.1, G=1.0, t=-1.0 
 
Fig.2 shows the variation of f-electron density <nif>with E for different values of Hubbard 
type interactionUdd. Sharp insulator to metal transition is observed. The nature of the 
transition is similar for all values of Udd.The critical f-level energy Ec, at which valence 
transition occur shifts to higher values for larger Udd. Echas value of the order of -1.9 for 
valence transitions of all Udd values. 
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Figure 3: Cfd vs. E for different values of Udd. 

Here U=2.0, V=0.1, G=1.0, t=-1.0 
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In Fig.3, f-d correlation function ܥ௙ௗ =< ௜݂ఙ
ற

௝݀ఙ > versusEplot is shown for various Hubbard 
type interactionsUdd. This correlation function is normally non-zero in the intermediate 
valence state [20]. If E is increased, at first the correlation function (Cfd) begins to decrease 
from a value close to zero, and after a critical E value (~ -1.9), Cfd gradually increases towards 
zero. The observation supports the fact that in the metallic or insulating phase Cfd should 
approach closer to zero value. It is also clear from the figure that for the metallic or insulating 
phase, smaller Udd keeps Cfd nearer to zero value indicating a sharper valence transition. The 
curves also shift towards larger values of E with the increase of Udd confirming delay in 
transition for higher Udd values.  
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Figure 4: Temperature dependence of entropy S for different values of Udd. 

Here E=-1.5, U=2.0, V=0.1, G=1.0, t=-1.0 
 
Fig.4 shows temperature dependence of entropy S for different values of Udd. Entropy 
represents the disorder of the system. From the figure, it is clear that at a certain temperature 
T, entropy decreases with higher values of Udd. So, the system becomes more ordered with 
Hubbard type interaction Udd. The region where the difference between the curves becomes 
broad [21] is the transition temperature region [0.1<T<0.4]. For T>0.45, good convergence is 
observed. 
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Figure 5: Temperature dependence of specific heat C for different values of Udd. 

Here E=-1.5, U=2.0, V=0.1, G=1.0, t=-1.0 
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The variation of specific heat (C) with temperature T is shown in Fig. 5 and Fig. 6. In Fig. 5, 
curves exhibit broad single peak structure [22] for all Uddvalues. Here E (=-1.5)>Ec, whereEc=-
1.9. The peak value of specific heat C increases and also shifts to highertemperature region 
with the increase of Hubbard type interaction between itinerant d electrons (Udd). 
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Figure 6: Temperature dependence of specific heat C for different values of E. 

Here Udd=0.4, U=2.0, V=0.1, G=1.0, t=-1.0 
 
Fig.6 shows both single and double peak structure of specific heat curves. A two peak 
structure [23] is obtained for E<Ec and broad single peak structure is found when E>Ec .The 
first sharp peak occurs due to a large number of many body states, which are nearly 
degenerate with the ground state. The second Schottky type peak is observed at higher 
temperature. This appears due to the binomial distribution [23] of the many body states at 
this energy region. The non- Fermi liquid behavior of the system is also confirmed by the 
curves. 
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Figure 7: Temperature dependence of spin susceptibility χ for different values of Udd. Here 

E=-1.5, U=2.0, V=0.1, G=1.0, t=-1.0 
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In Fig.7, the variation of spin susceptibility ߯ against temperature T is shown for different 
values of Udd. It is observed that the maximum of spin susceptibility߯ is at a definite critical 
temperature. The peak value of temperature indicates antiferromagnetic ordering in this 
region. Hubbard type interaction Udd increases the peak value, but shifts it to lower 
temperature region. Mixed valent TmSe is also ordered antiferromagnetically at very low 
temperatures [8] and shows a Curie contribution to the susceptibility. 
 
CONCLUSIONS 
 
The effect of Hubbard type interaction between spin up and spin down d-electrons (Udd) has 
been studied using EFKM. Theinteraction shifts the f-level energy E at which valence 
transition occurs. The f-d inter-site correlation function attains non-zero value in the mixed-
valent state. With the increase of Udd, more ordered state is found. Specific heat curves exhibit 
a double peak structure, a sharp peak at very lower temperature followed by a Schottky type 
peak at higher temperatures. Spin susceptibility shows a peak at lower temperature region 
verifying the Curie contribution to susceptibility.  
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