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ABSTRACT In this work, we obtain the Schrödinger equation solutions for the Kratzer potential plus 

screened Coulomb potential model using the series expansion method. The energy 
eigenvalues is obtained in non-relativistic regime and the corresponding unnormalized eigen 
function. Three special cases were obtained. We applied the present results to calculate 
heavy-meson masses of charmonium ܿܿ̅ and bottomonium ܾ തܾ,  and we got the numerical 
values for1S, 2S, 1P,2P, 3S, 4S ,1D,2D and 1F states. The results are in good agreement with 
experimental data and the work of other researchers. 
 

KEYWORDS Schrödinger equation; Kratzer potential; screened Coulomb potential; series expansion 
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1. INTRODUCTION 
 
The study of heavy quarkonium systems such as charmonium and bottomonium playsan important role in 
understanding the quantitative tests of quantum chromodynamics (QCD) and the standard model [1]. These 
systems can be studied within the Schrödinger equation (SE) [2]. The solution of SE with spherically symmetric 
potential is one of the important problems in physics and chemistry. It plays an important role for spectroscopy, 
molecules and nuclei, in particular, the properties of constituent’s particles and dynamics of their interactions 
[3]. There potential should take into account the two important features of the strong interaction, namely, 
asymptotic freedom and quark confinement [4]. The SE has been solved using various methods such as, 
asymptotic iteration method (AIM)[5] Laplace transformation method [6], super symmetric quantum mechanics 
method (SUSQM)[7], Nikiforov-Uvarov(NU) method [8-27], series expansion method [28-31] and others[32]. 
 
The most fundamental potential used in studying quarkonium system is the Cornell potential, also known as 
funnel potential. Most researchers have carried out works with Cornell potential. For instance, Vega and Flores 
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[33] solved the Schrödinger equation with the Cornell potential using the variational method and super 

symmetric quantum mechanics (SUSYQM). Ciftci and Kisoglu [34] addressed non-relativistic arbitrary l  -
states of quark-antiquark through the Asymptotic Iteration Method (AIM). The energy eigenvalues with any 

0l    states and mass of the massive quark-antiquark system (quarkonium) were gotten. An analytic solution 
of the N-dimensional radial Schrödinger equation with the mixture of vector and scalar potentials via the 
Laplace transformation method (LTM) was studied by [35]. Their results were employed to analyze the different 
properties of the heavy-light mesons. Al-Jamel and Widyan [36] studied heavy quarkonium (ܿܿ ഥand ܾ തܾ) mass 
spectra in a Coulomb field plus quadratic potential using the Nikiforov-Uvarov method. In their work, the spin- 
averaged mass spectra of heavy quarkonia(ܿܿ̅and ܾതܾ)  in a Coulomb plus quadratic potential is analyzed within 
the non-relativistic Schrödinger equation. Al-Oun et al. [37] examine heavy quarkonia(ܿܿ̅, and 
ܾതܾ)characteristics in the general framework of a non-relativistic potential model consisting of a Coulomb plus 
quadratic potential. Furthermore, Omugbe et al. [38] solved the SE with Killingbeck potential plus an inversely 
quadratic potential model. They obtained the energy eigenvalues and the mass spectra of the heavy and heavy-
light meson systems. In addition, Al-Jamel, [39] studied the energy spectra of mesons and hadronic interactions 
using Numerov’s method. Their solutions were used to describe the phenomenological interactions between the 
charm-anticharm quarks via the model. The model accurately predicts the mass spectra of charmed quarkonium 
as an example of mesonic systems. Inyang et al.[40] obtained the Klein-Gordon equation solutions for the 
Yukawa potential using the Nikiforov-Uvarov method. The energy eigenvalues were obtained both in 
relativistic and non-relativistic regime.  They applied the results to calculate heavy-meson masses of 
charmonium ܿܿ̅ and bottomonium ܾ തܾ. 
 
The Kratzer potential is one of the widely used potential models in molecular physics and quantum chemistry 
[41]. The Kratzer potential contains a repulsive part and long-range attraction. Apart from that, the potential is 
also known to approach infinity when the inter-nuclear distance approaches zero, due to the repulsion that exists 
between the molecules of the potential. As the inter-nuclear molecular distance approaches infinity, the potential 
decomposes to zero [42, 43]. The potential is of the form 

2( ) b cV r a
r r

  
                                                                                                                                      

(1) 

 
where a  , b   and c   are potential strength parameters.  
 
The Kratzer potential has been used as a potential model to describe inter-nuclear vibration of diatomic 
molecules by different authors [44, 45].  Another potential model used significantly in nuclear, particle and 
condensed matter physics is the screened Coulomb potential, also known as Yukawa potential [46]. The 
screened Coulomb potential is a short-range potential [47]. In solid-state physics, it describes the charge particle 
effects of conduction electrons [48]. It takes the form 

( ) ,
rpeV r

r



 
                                                                                                                                      

 (2) 

where p   is the screened Coulomb potential parameter,    is the screening parameter and r   is the distance 
between two particles. 
 
Many researchers, in recent time are concerned with combining two or more potentials. The fundamental nature 
of combining two or more physical potential models is to have a broader range of applications [49]. For 
example, Cornell potential, which is the combination of Coulomb potential with linear terms, is used in studying 
the mass spectra for coupled states and the electromagnetic characteristics of meson [50]. With this in mind, we 
attempt to solve the SE with a potential obtained from the combination of Kratzer potential [Eq. (1)] and 
screened Coulomb potential [Eq. (2)] using the series expansion method to obtain the mass spectra of heavy 
quarkonium  systems. To the best of our knowledge this is the first time Kratzer - screened Coulomb potential 
model is being studied with the aim of determining the mass spectra of heavy quarkonium system. 
The combine potential takes the form 

2( ) .
rb c peV r a

r r r



           (3) 

When we set 0p  ,Eq.(3) reduces to Kratzer potential. Also, when 0a c p     , Eq.(3) reduces to  

standard Coulomb potential, when 0a b c   , Eq.(3) reduces to screened Coulomb potential. We 
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organized this paper as follows: in section 2, we shall focus primarily on SE solution for the Kratzer- screened 
Coulomb potential system using the series expansion method. In section 3, we shall discuss special cases of 
potential. In section 4, we discuss the results, and in section 5, we give a concluding remark. 
 
 
2. BOUND STATE SOLUTIONS TO THE SCHRÖDINGER EQUATION WITH KRATZER- 
SCREENED COULOMB POTENTIAL 
 
We consider the radial SE of the form [28-31] 
 

 
2

2 2 2

( ) 2 ( ) 2 ( 1)( ) ( ) 0,d R r dR r l lE V r R r
dr r dr r

                
(4) 

where l  is rotational quantum number taking the values 0,1,2,3,4…,  is the reduced mass , r  is the 
internuclear separation and, E denotes the energy eigenvalues of the system. 
 
We carry out series expansion of the exponential term in Eq. (3) up to order three, in order to make the potential 
to interact in the quark-antiquark system and this yields, 
 

2 3 21 r ...
2 6

re r
r r

  




                (5) 

 
By substituting Eq. (5) into Eq. (3) we obtain 
 

20 1
2 3 42( ) ,V r r r

rr
 

      
  

(6) 

where 
2 3

0 1 2 3 4,   ,    ,    ,   .
2 6

p pc b p a p      


        


       (7) 

We substitute Eq.(6) into Eq.(4) and obtain 
2

2
2 2

( ) 2 ( ) L(L 1) ( ) 0,d R r dR r A Br Cr R r
dr r dr r r

            
(8) 

where 

  31 2
42 2 2 2

22 22 ,  ,  ,  ,E A B C
         

     
(9) 

   0
2

21 1 .L L l l
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
   (10) 

From Eq.(10) we have that 

 2 0
2

81 1 2 1 .
2 2

L l 
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   
(11) 

 
Now make an anzats wave function [51] 

2

( ) ( ),r rR r e F r     (12) 
where  and   are positive constants. Differentiating Eq.(12) twice we obtain the following: 

 2 2

(r) (r) e ( ) 2 ,r r r rR F F r r e              (13) 
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 

 
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 
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 (14) 
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Substituting Eqs. (12), (13) and (14) into Eq.(8) and divide through by 
2r re     we obtain 

   

   

2 2

2
2

4 4
2(r) 4 2 (r) ( ) 0.1 ( 1)2 6

C r B r
F r F F rL Lr A

r r

 
 

   

   
                       

(15) 

 
The function ( )F r   is a series of the form, 

2

0

( ) .n L
n

n

F r a r






   (16) 

 
Taking the first and second derivatives of Eq. (16), we obtain the following: 

  2 1

0

( ) 2 ,n L
n

n

F r n L a r


 



     (17) 
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n
n
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We substitute for Eqs. (16), (17) and (18) into Eq. (15) and obtain 

     
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(19) 

 
By collecting powers of r  in Eq.(19) we have 

           
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                 

  

 
  (20) 
Equation (20) is linearly independent, implying that each of the terms is separately equal to zero, noting that r  
is a non-zero function; therefore, it is the coefficient of r that is zero. With this in mind, we obtain the relation 
for each of the terms. 

      2 2 1 2 2 1 0n L n L n L L L       
  

(21) 

 2 2 2 0n L A     
  

(22) 

  24 2 6 0n L        
  

 (23) 

4 0B     (24) 
24 0C     (25) 

 
From Eq. (22) we have, 

.
4 2 2

A
n L

 
    

(26) 

 
From Eq .(25) we have, 

.
2
C 

  
(27) 
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We proceed to obtain the energy eigenvalue equation using Eq.(23)  and have 

  22 4 2 3n L        (28) 
 
Substituting Eqs. (9), (11), (26) and (27) into Eq. (28)  and simplifying we obtain 

   
2

2 2
2 23 0 01

42 2 2

8 824 2 2 1 4 1 2 1
2nlE n l n l
  





   

                
   



  
                          

(29) 

 
Substituting Eq.(7) into Eq.(29) we obtain the energy eigenvalue for the combined potential of Eq.(3) as; 

     
22 3

2 2 2

2 2 2

p 8 2 84 2 2 1 4 1 2 1
12nl

c cE n l b p n l a p    



   

                   
   



  
 

            (30)

 
 
Upon substituting Eqs (9), (11), (16), (26) and (27) into Eq. (12) we obtain theunnormalized wavefunction in the 
form 

 

 

 

3

2
2

222
22

23
2 81 1 8 4 1 2 12 2 1

2 2

0

( )

p
b p

r r
cc n ln l

n
n

R r a r e

 




   
  

                 








   (31) 

where 

na  = normalization constant 
 
3. SPECIAL CASES 
 
1. Setting 0p   in Eq.(30) we obtain the energy eigenvalue for Kratzer potential in the form 

   
22

2 2
2 2 2

8 2 84 2 2 1 4 1 2 1nl
c b cE n l n l a  


   

                
     

 (32) 

2. Setting 0p a c      in Eq.(30) we obtain the energy eigenvalue for standard Coulomb 
potential in the form 

  
2 2

2
2

2 4 1 2 1nl
bE n l 

    


  (33) 

3. Setting 0a b c    in Eq.(30) we obtain the energy eigenvalue for screened Coulomb potential in 
the form 

     
22 3 2

2 2

2

p 24 2 2 1 4 1 2 1
12nl

pE n l n l p  



        




 (34) 

 
 
4. RESULTS  
 
The mass spectra of the heavy quarkonium system such as charmonium and bottomoniumthat have the quark 
and antiquark flavor is calculated and we apply the following relation [52, 53] 

2 nlM m E  ,                                                                                                                                             (35) 

where m   is quarkonium bare mass,  and nlE   is energy eigenvalues. By substituting Eq. (30) into Eq. (35) we 
obtain the mass spectra for Kratzer-screen Coulomb potential as: 
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     
22 3

2 2 2

2 2 2

p 8 2 82 4 2 2 1 4 1 2 1         (36)
12

c cM m n l b p n l a p    



   

                    
   



  

 
Table 1: Mass spectra of charmonium in (GeV) (m 1.488c  GeV , 0.744  GeV

3.1674,  ,  1, 0.2860 GeV,b 0.001 GeV,c 0.1306 GeVa        and 0.0022P  )GeV  
 

State Present work [53] [40] Experiment [55] 
1S 3.096 3.096 3.096 3.096 
2S 3.686 3.686 3.686 3.686 
1P 3.295 3.255 3.527 3.525 
2P 3.802 3.779 3.687 3.773 
3S 4.040 4.040 4.040 4.040 
4S 4.269 4.269 4.360 4.263 
1D 3.583 3.504 3.098 3.770 
2D 3.976 - 3.976 4.159 
1F 3.862 - 4.162 - 
 
Table 2: Mass spectra of bottomonium in (GeV) (m 4.680b  GeV , 2.340  GeV ,

4.4477,  ,  1, 0.0273 , b 0.001 GeV,c 0.050 a GeV GeV        and 0.0022 P GeV ) 
 
State Present work [53] [40] Experiment[55] 
1S 9.460 9.460 9.460 9.460 
2S 10.569 10.023 10.023 10.023 
1P 9.661 9.619 9.661 9.899 
2P 10.138 10.114 10.238 10.260 
3S 10.355 10.355 10.355 10.355 
4S 10.567 10.567 10.567 10.580 
1D 9.943 9.864 9.943 10.164 
2D 10.306 - 10.306 - 
1F 10.209 - 10.209 - 
 
 

 
Figure 1: Variation of mass spectra with potential strength  a for different quantum numbers 
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Figure 2:  Variation of mass spectra with reduced mass  for different quantum numbers 
 

 
Figure 3:  Variation of mass spectra with screening parameter ( ) for different quantum number 
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5. DISCUSSION  
 
We calculate mass spectra of charmonium and bottomonium for states from 1S, 2S, 1P,2P, 3S, 4S ,1D,2D and 
1F  by using Eq. (36). We adopt the numerical values of bottomonium ( )bb  and charmonium ( )cc  masses as   

4.68 GeV   and 1.488  GeV  , respectively, Ref. [54]. Then, the corresponding reduced mass are b   2.340 

GeV  and c  0.744GeV . The free parameters of Eq. (36) were then gotten by solving two algebraic 

equations by inserting experimental data of mass spectra for 2 ,2S P   in the case of charmonium. In the case of 
bottomonium the values of the free parameters in Eq. (36) are calculated by solving two algebraic equations, 
which were obtained by inserting experimental data of mass spectra for1 , 2S S . Experimental data is taken 
from Ref. [55]. 
 
We note that calculation of mass spectra of charmonium and bottomonium are in good agreement with 
experimental data and other theoretical calculations. The values obtained are in a good agreement with the work 
of other researchers like in Ref.[53] and Ref.[40], as shown in tables 1 and 2. In Ref.[53] the author investigated 
the N-radial SE analytically by employing Cornell potential, which was extended to finite temperature. In 
Ref.[40] the Klein-Gordon equation is solved for the Yukawa potential using the Nikiforov-Uvarov method. The 
energy eigenvalues were obtained both in relativistic and non-relativistic regime.  The results were used to 
calculate heavy-meson masses of charmonium ܿܿ̅ and bottomonium ܾതܾ. We also plotted mass spectra energy 
against potential strength  a , reduced mass   and screening parameter   respectively. In Fig. 1, the mass 
spectra energy converges at the beginning but spread out and there is a monotonic increase in potential strength

 a . Figures 2 and 3 shows the convergence of the mass spectra energy as the screening parameter    and 

reduced mass    increases for various angular quantum numbers. 
 
6. CONCLUSION 
 
In this work, we have obtained the bound state solutions of the Schrödinger equation for the Kratzer plus 
screened Coulomb potential via the series expansion method. The energy eigenvalues are obtained in a  non-
relativistic regime. The corresponding unnormalized eigen function was also obtained. We applied the present 
results to calculate heavy-meson masses such as charmonium and bottomonium. The mass spectra energy of 
charmonium ܿܿ̅ and bottomonium ܾതܾ for states 1S to 1F were obtained and compared with experimental data 
and other theoretical works, which are in good agreement. We plotted the mass spectra energy against potential 
strength, screening parameter and reduced mass respectively. The energy eigenvalues can be used to study the 
suitability of material for mixed radiation dosimety as in Ref. [56].The analytical solutions can also be used to 
describe other characteristics of the quarkonium systems like thermodynamic properties. 
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