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ABSTRACT A phenomenological lattice dynamical model has been developed for the zinc-blende 

and diamond structure crystals. The model developed in the present work is an 
extended valence force field (EVFF) model which takes into account the short range 
valence force field interaction between bonded atoms and central interaction between 

non-bonded atoms. The model also incorporates the long-range coulombic interaction 
for zinc-blende crystals which are partially ionic in bonding. EVFF model is applied to 

lattice vibration of silicon to obtain the phonon dispersion curves, elastic constants, 
bulk modulus, Debye characteristic temperatures and phonon distribution function 

for silicon. The theoretical values are compared with the experimental results with 

satisfactory agreement. 
 

KEYWORDS Extended valence force field (EVFF) model, phonon distribution function, Debye 

characteristic temperature, phenomenological models 

 
INTRODUCTION 

 
The knowledge of various prominent features of the phonon density of states spectrum of a solid is 

important for a general theoretical understanding and detailed quantitative description of its thermal 
as well as optical properties. Various theoretical efforts have been made in last decades to develop 

theoretical models for lattice vibrations to obtain the phonon density of states spectra for elemental 
semiconductor crystal of diamond structure. Giannozzi et al. [1] presented the phonon dispersions in 

Si and Ge semiconductors applying the density functional linear- response approach. Wei and Chou 
[2] investigated the full phonon spectrum for Si and Ge with the pseudo-potential method and the 

local density approximation without using linear-response theory. Tamura et al. [3] examined the 
propagation of acoustic phonons in silicon on the basis of a bond change model and effective force 
constant model consisting of only short range forces. Yin and Cohen [4] investigated theoretically 

lattice dynamics of silicon applying ab initio pseudo-potential theory. Fleszar and Resta [5] 
investigated the inter-planar and inter-atomic force constants in Si using adiabatic bond charge 

model. Bose et al. [6] presented the phonon dispersion curves for Si using de Launay [7] and Clark, 
Gazis and Wallis [8] models. Zdetsis and Wang [9] presented the theoretical data for elastic constants, 

phonon frequencies, specific heats and Debye characteristic temperatures for Si using Born and Von 
Karman [10] model. Lattice dynamical calculation of phonon scattering at ideal Si-Ge interfaces has 

been done by Zhao and Freund [11]. Powell et al. [12] applied the Tersoff bond-order potential energy 

model to obtain the elastic and dynamical properties of elemental semiconductors including Si and 
binary semiconducting crystals of III-V groups. In recent years some theoretical studies [13-16] have 
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been reported on lattice dynamics and other properties of tetrahedrally bonded elemental and binary 

semiconductors. 
 

In the present lattice dynamical model of diamond structure elemental semiconductor, this valence 
force field has been extended to include the central interaction between non-bonded atoms upto 

second neighbours for short range interaction. In addition to this, the bond-bending, bond-stretching 
and interaction between bond-stretching internal coordinates between adjacent bonds are considered 

for short-range interaction between atoms. This extended valence force field (EVFF) model is 
developed for the tetrahedrally bonded zinc-blende crystals which are partially ionic and it takes into 

account the long-range Coulomb interaction. The EVFF model is modified for the diamond structure 

elemental semiconductors which are predominantly covalent and the ionicity is almost negligible. 
This EVFF model is earlier applied to lattice dynamics of diamond [17] crystal to obtain the phonon 

dispersion curves and Debye characteristic temperatures. The agreement between experimental and 
theoretical results has been found to be satisfactorily good. The EVFF model applied to diamond 

crystal is extended to describe the lattice dynamical properties of silicon in the present work. 
 
METHODOLOGY 
 

The lattice dynamical model developed for the tetrahedrally bonded zinc-blende and diamond 
structure semiconducting crystals in the present work is a phenomenological model in the sense that 

vibrations of atoms and interactions between them have been taken just like the phenomenon of 

vibrations of atoms in molecules in the fluid phase. The molecular spectra are explained by taking 
bond-stretching force between valence atoms and the bending of valence angles. This is called a 

simple valence force field. In solids which are predominantly covalent, the interaction between 
valence bonds and valence angles are considered in the potential function of atoms in the unit-cell in 

the crystalline forms. The present EVFF model takes into account the interaction between non-bonded 
atoms of the crystal in accordance with the modification of Urey-Bradley [18]. The changes in the 
bond-length and bond-angles during vibration are called internal coordinates. Following the method 
of Wilson et al. [19], the valence internal coordinates are transformed into atomic displacement 

coordinates of the crystal as reported by Singh and Roy [20]. This transformation is employed in 

expressing the potential energy of the atoms of the unit cell in terms of the components of the 
displacements of atoms. In this model, the contribution to potential energy from other neighbouring 

atoms except first and second neighbours has been ignored because of the short-range character of the 
force-field. 

 
The potential energy for short-range interactions of atoms of unit cell of tetrahedrally bonded 

semiconducting crystals having two types of atoms is given by 
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In equation (1), i is the reference atom (one type) (1), j and k are two atoms (another types) bonded to 

i, and l is atom (type one) bonded to j. Also, in equation (1), we have 

rK = bond-stretching force constant, 

rK = central force constant between non-bonded atoms of one type 

rK  = central force constant between non-bonded atoms of another type 

K = bond-bending force constant for one type of bond-angle 

K  = the bond-bending force constant of another bond-angle 

rrK = the force constant for the interaction between adjacent bonds. 
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The components of the forces acting on the reference atoms of two types of the unit cell are obtained 
from the relation 

 VgradF   (2) 

 
 
SECULAR EQUATION 
 
The secular equation of the lattice vibration of a lattice with a basis is written as 
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In equation (3), 
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delta function. 

 
To obtain the elements of the dynamical matrix for the short-range interaction, the components of the 

forces acting on the reference atoms by first and second neighbours are obtained. The internal 
coordinates are transformed into the atomic displacement coordinates. Taking help of this 
transformation and applying the equation (1) and equation (2), the elements of the dynamical matrix 
for short-range interaction are obtained. 

 

The silicon and other crystals of diamond structure are predominantly covalent, the coulombic 
interaction is neglected. As there is only one type of atoms in such crystals, we have taken 

 

 KKKKK rr  ,  
 
The first reference atom is designated as ‘1’ and second reference atom is designated as ‘2’. Thus 

following elements of the short-range interaction matrix under EVFF model are obtained for silicon 

lattice: 
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Here 0r  is the chemical bond length and ‘a’ is half lattice constant, other elements of the 

determinantal matrix   ,qD  can be obtained by circular permutation of the indices x, y, z where, 

,  stands for x, y and z. The elements of the dynamical matrix obey the following relations. 
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ELASTIC CONSTANTS 
 
Taking into account the contribution from coupling coefficients, the following expressions for three 
elastic constants C11, C12 and C44 are obtained in terms of model parameters on solving the secular 

determinant for long waves for diamond structure crystals. 
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EVALUATION OF MODEL PARAMETERS 
 
The values of EVFF model parameters for silicon are obtained with the help of the expressions of the 

longitudinal and transverse optical phonons at zone centre and at the zone boundary of Brillouin 

zone along [100] symmetry direction. The expressions for LO(), LO(X) and TO(X) are obtained by 

solving the secular equation for zone centre () and zone boundary (X) along symmetry direction 

[100]. The expressions are 
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From these expressions, we have 
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The parameter Kr is obtained applying the equilibrium condition of the lattice. After obtaining the 

values of 
rK ,

rK   and 
K , the values of 

rrK  is calculated from equation (10). It is significant to note 

that the values of model parameters have been evaluated without taking use of the elastic constants, 
C11, C12 and C44. The values of model parameters and the input physical data for their evaluation for 
silicon crystal are given in the Table 1. 

 
Table 1: Input physical data and calculated values of model parameters. 

 
Input Physical data Model parameters in units of 104 dynes cm-1 

LO() = 15.53 THz Kr = 2.141340 

LO() = 12.32 THz Kr = 0.535335 

TO(X) = 13.90 THz Krr = 28.82433 

2a (lattice constant) = 5.4307 10-8 cm K = 0.548956 

m(mass) = 46.62910-24 gm  

 

 
RESULTS AND DISCUSSION 
 
Phonon dispersion curves of silicon 

The lattice dynamics of silicon has been studied theoretically and experimentally by various workers 
in the past. Dolling [21] reported the phonon dispersion results along three principal symmetry 

directions on the basis of his experiment. Palevski et al. [22] and Parker et al. [23] have reported the 

Raman frequency for silicon from their study of first-order Raman spectra of this crystal. One phonon 
and two-phonon infra-red spectra have been investigated by Angress et al. [24] and Balkanski [25] 

respectively. Temple and Hathaway [26] reported the second order Raman spectra experiment for 
phonon frequencies of silicon. Dolling [21] gave the theoretical descriptions of phonon dispersion 

curves of this crystal. Singh and Dayal [27], Solbrig [28], Tubino et al. [29], Zdetsis and Wang [9] and 
Soma and Marita [30] made theoretical studies of lattice dynamics of this crystal having good 

agreement with the experimental results. 
 

The EVFF model developed for the diamond structure crystal has been applied to obtain the phonon 
dispersion curves for silicon in the present work. The phonon dispersion curves along the principal 
symmetry directions [100], [110] and [111] obtained for silicon have been presented in Figure 1. The 

agreement of the present result with the experimental values of Tubino et al. [29] is satisfactory. The 
model parameters used in the present calculations are shown in Table 1 along with the input physical 

data. The calculated values of elastic constants C11, C12, C44 and bulk modulus in the present work 
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along with the experimental values are shown 

other workers are also shown for comparison. The
found to be nearly twice the experimental value. Signific

as obtained by Sokel and Harrison [31] 
(LCAO). 

 

Figure 1: Phonon dispersion curves of silicon along symmetry directions.
Solid circles represent the experimental results [29].

 

 
Table 2: Elastic constant in units of 10
 

 Experimental 
values 

Calculated 
values

C11 1.657 1.552

C12 0.629 0.748

C44 0.796 0.789

K 0.988 2.000

 
 
Specific heats and Debye characteristic temperatures of silicon
 

Following the theory of specific heat of solids by Born and Von Karman 
at constant volume is given by 

   


 gENRCV 3  

Where N=1/3mn, m = number of divi

cell, R = universal gas constant, g()

given by 

Nutan Kumari & Sunil Kumar Mishra  / Lattice Dynamics of Silicon 

Bulletin of Pure and Applied Sciences  
Vol. 38-D (Physics), No .1 / January-June 2019 

along with the experimental values are shown in Table 2. The calculated values of elastic constants b

also shown for comparison. The bulk modulus calculated in the present work is 
found to be nearly twice the experimental value. Significantly our calculated value is exact

[31] calculated on the basis of linear combination of atomic orbital

Figure 1: Phonon dispersion curves of silicon along symmetry directions. 
represent the experimental results [29]. 

Table 2: Elastic constant in units of 1012 dyne cm-2 and bulk modulus in 1012 erg/cm3 

Calculated 
values 

Calculated values (others) 

(34) (35) (31) (31)

1.552 1.207 - - -

0.748 0.860 - - -

0.789 0.317 0.943 0.717 -

2.000 - - - 2.00

and Debye characteristic temperatures of silicon 

Following the theory of specific heat of solids by Born and Von Karman [10] the atomic specific heat 

   (15) 

= number of divisions in the first Brillouin zone, n = number of atoms in the unit 

)= frequency distribution function and E() is the Einstein function 

 

ed values of elastic constants by 

bulk modulus calculated in the present work is 
antly our calculated value is exactly the same 

calculated on the basis of linear combination of atomic orbitals 

 

(31) 

- 

- 

- 

2.00 

the atomic specific heat 

= number of atoms in the unit 

is the Einstein function 
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For the calculation of Debye temperatures 

first with help of equation (15). 
D

from (
VC  TD ) Table [32]. Having a theoretical value of  

at various temperatures. 

 
The vibration frequencies of silicon for 48 wave vectors are computed employing EVFF mode

developed in the present work. The frequency distribution function 

values of phonon frequencies. The computed values of 

at different temperatures for silicon. The frequency distribution 

Figure 2. 
 

 

 
 
 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 

 
 

 
 
 
 

Figure 2:  Frequency distribution spectra for silicon.
 

The computed results of Debye characteristic temperature
experimental results obtained by Flubacher and L

The agreement between present theoretical results obtained on the basis of EVFF mode

obtained experimentally is fairly satisfactor
noted that the divergence of our results with the 

and Wang [9] obtained by applying BKM
experimental results at higher temperatures are

the present theoretical model. Inclusion of anharmonic or quasi
of the lattice dynamical model is expected to remove the divergence at higher temperatures

temperatures anharmonocity becomes
model is successful in explaining the variation of 
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2kT   (16) 

For the calculation of Debye temperatures 
D  at various temperatures, the value of C

T  values corresponding to computed values of 
VC

Having a theoretical value of  TD  obtained in this way, 

The vibration frequencies of silicon for 48 wave vectors are computed employing EVFF mode

. The frequency distribution function g() is obtained from computed 

values of phonon frequencies. The computed values of g() are utilized in obtaining the specific heats 

temperatures for silicon. The frequency distribution spectrum for silicon is

Figure 2:  Frequency distribution spectra for silicon. 

The computed results of Debye characteristic temperatures for silicon is given in Figure 
rimental results obtained by Flubacher and Leadbetter [33] are given in Figure 3 for comp

The agreement between present theoretical results obtained on the basis of EVFF mode

mentally is fairly satisfactory with slight variation at high temperature.
noted that the divergence of our results with the experimental ones is comparable with that of Zdets

applying BKM [10] using sixteen parameters. The deviations from 
experimental results at higher temperatures are mainly due to harmonic approximation adopted in 

tical model. Inclusion of anharmonic or quasi-harmonic factors in the development 
of the lattice dynamical model is expected to remove the divergence at higher temperatures

city becomes dominant. It is noteworthy that a simple four parameter EVFF 
model is successful in explaining the variation of 

D  with temperatures. 

 

VC  is computed 

V
 are obtained 

, 
D  is obtained 

The vibration frequencies of silicon for 48 wave vectors are computed employing EVFF model 

) is obtained from computed 

are utilized in obtaining the specific heats 

spectrum for silicon is shown in 

licon is given in Figure 3. The 
for comparison. 

The agreement between present theoretical results obtained on the basis of EVFF model and those 

temperature. It is to be 
rable with that of Zdetsis 

deviations from 
mainly due to harmonic approximation adopted in 

in the development 
of the lattice dynamical model is expected to remove the divergence at higher temperatures. At higher 

ple four parameter EVFF 
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Figure 3:  (DT) curve for silicon. Circles represent the experimental result [33].

 
CONCLUSIONS 
 

The present EVFF model developed for the tetrahedrally bonded elemental and binary 
semiconducting crystals of diamond structure 
satisfactorily the experimental results of phonon dispersion curves

and Debye characteristics temperatures of silicon. It is significant that the pres
require the use of experimental values of elastic constant

results almost same as the experimental values. The 
improve if interaction terms between bond

included in the model. Notwithstanding,
which theoretically explains the lattice vibration and thermal properties of silicon is an additional 

significant features of the present study.
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