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ABSTRACT We have studied the distribution of conductance using disordered 

conductors. We have utilized random matrix model as a function of 
disorder across the Anderson transition. This produced the analytical 
framework for quantum phase transition having order parameter function. 
We have constructed the distribution from its moments and obtained joint 
probability distribution of transmission levels having the conductance as 

linear statistics. It was used to obtain the high symmetry in the crossover 
region in quasi one dimensional system. This was prevented for the gain. 
We have considered Wigner-Dyson interaction formation. We have found 
that eigen vectors of transmission matrices in quasi one dimensional were 

isotropically distributed at all disorder and joint probability distribution 
allowed a crossover from met al.lic to insulating regions. 
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INTRODUCTION  
 
Altshuler et al.1 presented the distribution of 
conductance for reconstruction. Moments were 
found for perturbation dimensions but in the 
case or permittivity have unity value2. Field 
theory presented the distribution of 
conductance. Anderson et al.3 explained 
transition corresponded to a metal. to insulator. 

Several investigators4-9 studied mesoscopic 
fluctuations and transport properties of disorder 
conductor. It was studied that the shape of 
distribution of conductance changed when there 
was no phase transition10-14. Peter15, Markos16 

and Ruhlander et al.17 studied the case of tight 
binding Anderson model and experiments on 
gated GaAs:Si wires18 and suggested that 

distributions were same as a in the case of three 
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dimensional cases across the transition. Wang et 
al.19, Yadav et al.20-21 Studied the properties of 
conductance and it was found that density of the 

eigen values as function of anisotropy 
parameter. Xin Li et al.22 studied the quantum 

transport for undoped Ge/SiGe hetrostructure. 
It was found that there was long hole degraded 

mobility in hetrostructure as the ideal platform 
for quantum device implementation. Song et 
al.23 studied conductance quantization of super 
conductors as potential Majorana platform. In 
this study the conductance plateaus were found. 

Ohnishi et al.24 studied defects on electrical 
conductance, thermal conductance and seebeck 

coefficient. It was found that defects strongly 
suppressed the electron conductance and 
deteriorated the thermoelectric performance of a 
carbon nanotube.  Zhang et al.25 presented 
conductance of dissipative quantum dot.   
 
METHOD 
 
We have taken into consideration random 

matrix model for the study. The probability 
distribution function for transmission is given 
by the relation when conductance is linear. 
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This relation was used to explain distribution of 

conductance in the cross over region. For quasi 
one dimensional case the eigen vectors were 

obtained for exact solution of distribution of 
conductance. From the solution of Dorokhov-
Mell-Pereya equation that determined the 

evolution of joint probability distribution to 
obtain normal distribution. The 

characterization analysis was made by 
conductance. Three dimensional distribution 

were compared with random matrix model. 
Quasi-one-dimensional distribution was also 
compared with Anderson model conductance.  

 
RESULTS AND DISCUSSION     
 
Graph (1) shows the variance of quasi on 
dimensional with linear sigma model, which 

shows that for 6N  for all disorder in quasi 
one dimensional case when N is increased we 

found correct results. Graph (2) shows the 
comparison of plot of average conductance in 

three dimensional case for 6N  vs quasi one 

dimensional case. It was found that in three 
dimensional case our result of model agreed 
well with previous results which determined 
full distribution of conductance. Graph (3) 

shows the distribution of conductance for three 
dimensional and quasi one dimensional case. 
Graph (1) shows the results for disorder in quasi 
one dimensional case. We have examined the 
variance of disorder when N was increased. In 
the case of three dimension when N value was 
small the variance in weak disorder was found. 
Graph (2) shows the changes of conductance in 

three dimensional case. Graph (3) shows the 
characteristics of disorder due to conductance in 
three dimensional case and quasi one 
dimensional case. Distribution changed from 
Gaussian to metallic. 
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Graph 1:  Plot of variance of quasi one dimensional with linear  model. 

 

 
Graph 2:  Plot of average conductance in three dimension for 6N   vs quasi one dimensional. 
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Graph 3:  Plot of different values of conductance for changing the distribution from met al.lic to 

insulating regions. 
 
CONCLUSION 
 

We have studied the distribution of conductance 
using Anderson model of disorder conductors 
and their characteristics. The random matrix 
theory was used for the study of distribution of 
conductance. It was found that the eigen vectors 
of the transmission matrices in quasi one 
dimensional was isotropically distributed at all 
disorder. So joint probability distribution was 

allowed.   
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