
Bulletin of Pure and Applied Science 
Physics, Vol.44D No.2, 
July-December 2025 P.56-66 

Print version   ISSN 0970 6569 
 Online version ISSN 2320 3218 

 
Review Article Available online at www.bpasjournals.com 

 

A Plausible Formal Correspondence between Tetrahedral 
Condensates/TSC and PT-Symmetric Crystals model of CMNS (aka. Low-
Energy Nuclear Reactions) 
 
1Victor Christianto* and 2Florentin Smarandache 
 

Author’s Affiliations: 1Dept. Forestry, Malang Institute of Agriculture, East Java, Indonesia 

E-mail: victorchristianto@gmail.com 
2Dept. Mathematics and Sciences, University of New Mexico, Gallup, NM, 

USA.  
E-mail: smarand@unm.edu 

 
*Corresponding author: Victor Christianto,  

Dept. Forestry, Malang Institute of Agriculture, East Java, Indonesia  

E-mail: victorchristianto@gmail.com 

 

ABSTRACT Akito Takahashi's Tetrahedral Symmetric Condensate (TSC) model, 

detailed in several of his earlier works1 proposes a mechanism for 
condensed matter nuclear science (CMNS) aka. low-energy nuclear 
reactions (LENR) within palladium lattices. The model centres on the 
formation of a tetrahedral cluster of deuterons, enhancing the probability 

of nuclear fusion. Here, we explore the possibility of extending this 
framework by considering the TSC within a more general crystalline solid 
with tetrahedral symmetry, and by approximating the screening potential 
experienced by the deuterons using PT-symmetric potentials. 
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INTRODUCTION: TAKAHASHI'S (TSC) 
MODEL 
 
Akito Takahashi's Tetrahedral Symmetric 
Condensate (TSC) model, detailed in several of 
his earlier works proposes a mechanism for low-

energy nuclear reactions (LENR) within 

                                                           
1 cf. for instance, Proc. ICCF-19, Prof. A. Takahashi, vixra.org/1504.0191v1 (2015). 

palladium lattices (ICCF-19, 2015). The model 
centres on the formation of a tetrahedral cluster 
of deuterons, enhancing the probability of 
nuclear fusion. 

Prof. Takahashi's TSC model postulates that 
under specific conditions within a palladium 

lattice, four deuterons can arrange themselves in 
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a tetrahedral configuration. This arrangement 
enhances the overlap of their wave functions, 
significantly increasing the probability of fusion. 

The model emphasizes the importance of the 
lattice structure in facilitating this condensation. 

In the present article, we explore the possibility 
of extending this framework by considering the 

TSC within a more general crystalline solid with 
tetrahedral symmetry, and by approximating the 
screening potential experienced by the deuterons 
using PT-symmetric potential. The present article 
can be considered as a follow up to our previous 

article at Infinite Energy Magazine, 2008 [2]. 
 
GENERALIZING TO TETRAHEDRAL 
SYMMETRIC CRYSTALS 
 
We can envision the TSC model as a specific 
manifestation of a more general phenomenon 
within crystalline solids that exhibit tetrahedral 
symmetry. Such solids, beyond palladium, may 
offer environments conducive to the formation of 
similar tetrahedral clusters.  

Starting with hypothesizing that Akito 
Takahashi's Tetrahedral Symmetric Condensate 
(TSC) model might be a specific instance of a 
broader physical phenomenon, we can consider 

crystalline solids as a general framework. In 
essence, the TSC model suggests that specific 
arrangements of deuterons, particularly the 

tetrahedral configuration, are favoured within 
the lattice structure of certain materials. 

Expanding on this hypothesis, we propose that 
crystalline solids exhibiting tetrahedral 
symmetry, extending beyond just palladium, 
may provide an environment where similar 

tetrahedral clusters can form and stabilize. The 
critical factor can be found in the lattice's inherent 
ability to generate potential wells, which act as 

traps, facilitating the assembly and maintenance 
of these clusters. 
 
UNDERSTANDING CRYSTALLINE SOLIDS 
 
Crystalline solids are characterized by their 
highly ordered, repeating atomic or molecular 
structure. Unlike amorphous solids, where atoms 
are arranged randomly, crystalline materials 

possess a long-range order, forming a regular, 
three-dimensional lattice. This lattice structure is 
defined by a unit cell, the smallest repeating unit 

that, when translated in three dimensions, 
generates the entire crystal. 
Key characteristics of crystalline solids include: 

 Long-Range Order: Atoms or molecules are 
arranged in a periodic pattern that extends 
throughout the material. 

 Lattice Structure: The regular arrangement of 
atoms forms a lattice, which can be described by 

a unit cell. 

 Defined Melting Point: Crystalline solids have a 
sharp melting point, as the ordered structure 
breaks down at a specific temperature. 

 Anisotropy: Many physical properties of 
crystalline solids, such as conductivity and 
mechanical strength, can vary depending on the 
direction within the crystal. 
 
TETRAHEDRAL SYMMETRY IN 
CRYSTALLINE LATTICES 
 

Tetrahedral symmetry, a specific type of spatial 
arrangement, is characterized by four equivalent 
vertices forming a tetrahedron. This symmetry is 
observed in various crystalline structures, 
including diamond cubic, zinc blende, and 

certain metallic alloys. When a crystal lattice 
exhibits this symmetry, it can create potential 

wells that favour the formation of tetrahedral 
clusters. 

 
These potential wells arise from the electrostatic 
interactions between the atoms or ions in the 
lattice. The arrangement of atoms creates regions 
of lower potential energy, where other atoms or 

ions can be trapped. In the context of Takahashi's 
TSC model, these potential wells can trap 

deuterons, allowing them to form the tetrahedral 
clusters necessary for enhanced fusion. 
 
POTENTIAL WELLS AND CLUSTER 
FORMATION 
 
The depth and shape of the potential wells are 
crucial for the formation and stability of 
tetrahedral clusters. Deeper wells can confine the 

deuterons more tightly, increasing the 
probability of their interaction. The shape of the 
well can also influence the arrangement of the 
deuterons, favoring the tetrahedral 

configuration. 
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The lattice's ability to create these potential wells 
is influenced by: 

 Atomic Spacing: The distance between atoms in 

the lattice determines the size and shape of the 
potential wells. 

 Electronic Configuration: The electronic 
configuration of the atoms influences the 
electrostatic interactions and, consequently, the 

potential landscape. 

 Lattice Vibrations (Phonons): Phonons can 
modulate the potential wells, affecting the 
stability of the tetrahedral clusters. 

 Defects and Impurities: Lattice defects and 
impurities can create additional potential wells or 
modify existing ones, influencing the formation 
of clusters. 
 
IMPLICATIONS FOR LOW-ENERGY 
NUCLEAR REACTIONS 
 

By recognizing that the TSC model might be a 
specific occurrence within a broader class of 
tetrahedral symmetric crystalline solids, we open 
up new avenues for exploring LENR. This 
approach allows us to consider a wider range of 

materials and lattice structures that might 
support the formation of tetrahedral clusters. 

Furthermore, it emphasizes the importance of 
understanding the potential landscape within 

crystalline solids. By accurately modelling the 
potential wells, we can predict and optimize the 
conditions for enhanced fusion. 
In conclusion, crystalline solids with tetrahedral 
symmetry provide a promising framework for 

understanding and exploring the TSC model. The 
lattice's ability to create potential wells is crucial 

for the formation and stabilization of tetrahedral 
clusters, opening up new possibilities for low-
energy nuclear research. 
 
PT-SYMMETRIC POTENTIAL 
APPROXIMATION 
 
To simplify the analysis of the screening potential 
experienced by the deuterons within the 

crystalline lattice, we can approximate it using a 
PT-symmetric potential. PT-symmetric quantum 
mechanics, pioneered by Carl Bender, allows for 
the existence of real eigenvalues even when the 

Hamiltonian is not Hermitian, provided it 
satisfies PT symmetry (parity and time-reversal 
symmetry).    

A sinusoidal potential, which can be tailored to 
exhibit PT symmetry, offers a tractable model for 
simulating the crystalline environment. Consider 

a potential of the form: 
 

V(x)=V0.sin(kx)+i.V1.cos(kx)                                (1) 
 

where V0 and V1 are real constants, and k is the 
wave number. This potential is PT-symmetric 
because: 
V(−x)=V0.sin(−kx)+i.V1.cos(−kx)=−V0

.sin(kx)+i.V1.cos(kx)                                                      (2) 

 
V∗(−x)=−V0.sin(kx)−i.V1.cos(kx)=V(−x)                (3) 

 
This potential can be used to model the periodic 
potential landscape experienced by the deuterons 
within the crystalline lattice. The imaginary 
component iV1cos(kx) can represent the gain and 
loss effects that might arise from interactions 
with the lattice vibrations or other excitations. 

 
CONNECTING TSC AND PT-SYMMETRIC 
QM 
 
The application of PT-symmetric potentials to the 
crystalline environment surrounding the TSC 

offers several advantages: 
1. Simplified Modeling: The sinusoidal potential 

provides a relatively simple model for the 

complex screening potential within the crystal. 
2. Real Eigenvalues: PT-symmetric potentials can 

yield real eigenvalues, corresponding to stable 
energy states of the deuteron cluster.    

3. Enhanced Wave Function Overlap: The specific 
form of the PT-symmetric potential can be tuned 

to enhance the overlap of the deuteron wave 
functions, thereby increasing the fusion 
probability. 

4. Lattice Interactions: PT-symmetric interactions 
can model lattice effects, such as phonons and 
other excitations, that influence the fusion 
process. 
 
ANALYZING THE PT-SYMMETRIC 
POTENTIAL AND ITS IMPLICATIONS FOR 
LOW-ENERGY FUSION 
 
The potential described by equations (2) and (3) 

is: 
V(x)=V0.sin(kx)+i.V1.cos(kx)                                                                                                            
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This potential possesses PT symmetry, meaning 
it remains invariant under simultaneous parity 
(P: x→−x) and time-reversal (T: i→−i) operations. 

Let's break down its properties and implications: 
1. PT Symmetry: 

 Parity (P): V(−x)=−V0.sin(kx)+i.V1.cos(kx) 

 Time-Reversal (T): V∗(−x)=−V0.sin(kx)−i.V1.
cos(kx) 

 PT Symmetry: V(−x)=V∗(−x) 
This symmetry ensures that the Hamiltonian, 
when constructed with this potential, can have 
real eigenvalues, which correspond to stable 

energy states. This is crucial for maintaining the 
stability of the tetrahedral deuteron cluster. 
2. Physical Interpretation: 

 The real part, V0sin(kx), represents a periodic 
potential, akin to the lattice potential in a crystal. 

 The imaginary part, iV1cos(kx), introduces gain 
and loss effects, which can model interactions 
with lattice vibrations (phonons), defects, or 
other excitations. These interactions can influence 
the tunneling probability and, consequently, the 
fusion rate. 
3. Schrödinger Equation: 
The time-independent Schrödinger equation for 

a deuteron in this potential is: 
−2m.ℏ2dx2.d2ψ(x)+V(x).ψ(x)=Eψ(x)                       (4) 
where: 

 ℏ is the reduced Planck constant. 

 m is the deuteron mass. 

 ψ(x) is the deuteron wave function. 

 E is the energy eigenvalue. 
 
MATHEMATICA CODE FOR SOLVING THE 
AFOREMENTIONED EQUATION 
CORRESPONDING TO CRYSTALLINE 
SOLID  
 
Here's the Mathematica code to solve the 
Schrödinger equation numerically: 
 
Mathematica (outline only) 

 
Clear["Global`*"]; (* --- Parameters for the PT-
symmetric Sinusoidal Potential in a Crystalline 
Solid --- *) (* Define the potential. For a crystalline 

solid, it's periodic. *) (* Let's assume a lattice 
constant 'a'. V[x] = V[x + a] *) (* The potential is 
PT-symmetric if V[x] = V*[-x] and V[x] is even, 
and V[x] is real *) (* or V[x] = V*[-x] holds for the 

complex part. *) (* For a sinusoidal potential, V[x] 
= V0 Sin[k x] + I V1 Cos[k x] is PT-symmetric if k 

is chosen such that *) (* k a = 2 Pi n for some 
integer n, meaning it's periodic over 'a'. *) a = 2*Pi; 
(* Lattice constant (unit cell size). Chosen to 

match kValue=1 *) kValue = 2*Pi/a; (* Wave 
number, chosen so that Sin[kValue*x] and 

Cos[kValue*x] are periodic with period 'a' *) 
V0Value = 1; (* Real potential strength *) V1Value 

= 0.5; (* Imaginary potential strength for PT-
symmetry *) V[x_] := V0Value*Sin[kValue*x] + 
I*V1Value*Cos[kValue*x]; (* Other physical 
constants *) hbar = 1; (* Reduced Planck constant, 
for simplicity *) m = 1; (* Mass, for simplicity *) (* 

--- Solving the Schrödinger Equation with Bloch 
Boundary Conditions --- *) (* For a crystalline 

solid, we solve over one unit cell, say from 0 to 'a'. 
*) (* We need to apply Bloch's theorem: psi[x + a] 
= Exp[I*K*a] * psi[x] *) (* and psi'[x + a] = 
Exp[I*K*a] * psi'[x], where K is the Bloch wave 
vector (quasi-momentum). *) (* We'll iterate over 
K values to find the energy bands. *) (* Range for 
Bloch wave vector K (typically from -Pi/a to 

Pi/a, the first Brillouin zone) *) KValues = 
Range[-Pi/a, Pi/a, Pi/(10*a)]; (* Example: 21 K 
points in the first Brillouin zone *) 
Print["Calculating Energy Bands for PT-
symmetric Sinusoidal Potential..."]; energyBands 
= Monitor[ Table[ (* Define the differential 
equation *) schrodingerEq = -

hbar^2/(2*m)*psi''[x] + V[x]*psi[x] == E*psi[x]; (* 
Set up the boundary conditions based on Bloch's 
theorem *) (* We need to solve a generalized 
eigenvalue problem. *) (* NDEigenSystem is ideal 

for this if the boundary conditions can be 
expressed in its form. *) (* For more complex 
boundary conditions like Bloch's, we can use 
NDSolve's capabilities to find E for a given K. *) 

(* This approach uses NDSolve with a search for 
E that satisfies Bloch conditions. *) (* This is more 
involved and might require a root-finding 
approach or manual iteration for E. *) (* A 
common alternative for band structures is to use 

transfer matrices or plane wave expansion. *) (* 
Let's simplify by using NDEigenSystem on a 
finite interval with periodic-like conditions *) (* 
(This isn't *exactly* Bloch's theorem for arbitrary 

K, but a common approximation or a specific 
case). *) (* For a true Bloch approach, you'd 
typically look for values of E where the transfer 
matrix over one unit cell has eigenvalues of Exp[I 
K a] *) (* Here's a common numerical approach 
for periodic potentials: *) (* We define a trial 
solution and use NDSolve, then find E that 
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satisfies the Bloch condition *) (* This is typically 
done by looking for the eigenvalues of a matrix 
derived from the discretized Hamiltonian. *) (* 

For simplicity and to fit the NDSolve paradigm 
somewhat, let's consider the problem on one unit 

cell. *) (* We will search for E such that psi[a] == 
Exp[I K a] psi[0] and psi'[a] == Exp[I K a] psi'[0] 

*) (* This is a numerical root-finding problem for 
E. Let's try to set up an objective function. *) (* For 
illustrative purposes, and because 
NDEigenSystem has simpler BCs, I'll show a 
simpler case where we find eigenvalues for a 

*periodic* system (K=0 or K=Pi/a equivalent) or 
a single-well bound state if we were to treat it as 

a finite system. *) (* To find Bloch waves, one 
common technique is to search for eigenvalues E 
for which a fundamental set of solutions {phi1[x], 
phi2[x]} (e.g., phi1[0]=1,phi1'[0]=0; 
phi2[0]=0,phi2'[0]=1) satisfies the Bloch condition 
at x=a. This leads to a determinant equation for E. 
*) (* Method using `WhenEvent` to find 

eigenvalues that satisfy Bloch conditions: *) (* 
This is still complex with `NDSolve`. A more 
robust way for bands is a matrix method. *) (* 
Let's illustrate with a direct NDEigenSystem for 
periodic potential (K=0) for a basis. *) (* This will 
give discrete eigenvalues, which for a periodic 
system correspond to band edges (K=0 or 

K=Pi/a). *) (* For a true band structure, you'd 
solve for psi[a] and psi'[a] in terms of psi[0] and 
psi'[0] *) (* using NDSolve, then set up a 2x2 
matrix M such that {psi[a], psi'[a]} = M . {psi[0], 

psi'[0]}. *) (* The eigenvalues of M are Exp[I K a]. 
You then solve for E given the K. *) (* Re-
evaluating the best approach within 
NDSolve/NDEigenSystem for Bloch waves. *) (* 

`NDEigenSystem` can handle periodic boundary 
conditions, which is a specific case of Bloch's 
theorem (K=0 or K=Pi/a). *) (* For a generic K, 
`NDSolve` is used to propagate, then a secular 
equation is solved. *) (* Let's use a simpler 

NDEigenSystem approach to find energy levels 
within one unit cell that would correspond to 
band edges (e.g., Gamma point K=0). *) If[Abs[K] 
== 0, (* Gamma point: K=0, so psi[a]=psi[0] and 

psi'[a]=psi'[0] *) {vals, funcs} = NDEigenSystem[ 
{-hbar^2/(2*m)*psi''[x] + V[x]*psi[x], 
DirichletCondition[psi[x] == psi[x + a], x == 0 || 
x == a]}, psi[x], {x, 0, a}, 5, (* Requesting 5 
eigenvalues/functions *) Method -> 
{"SpatialDiscretization" -> {"FiniteElement", 
{"MeshOptions" -> MaxCellMeasure -> a/50}}}, 

AccuracyGoal -> 4 ]; If[Length[vals] > 0, {K, 
Sort[Re[vals]]}, (* Only store real part of 
eigenvalues for plotting *) {K, {}} ], (* For K != 0, 

we need to implement Bloch conditions directly. 
This is more involved. *) (* A common method is 

to use a shooting method or find the determinant 
of a boundary condition matrix. *) (* For 

demonstration, let's keep it simple and just show 
the K=0 case. *) (* For other K, the energies will 
typically split and form bands. *) (* As an 
alternative for a general K, one would set up a 
matrix whose determinant must be zero. *) (* This 

involves two independent solutions of the 
Schrödinger equation for a given E and K. *) (* Let 

psi1[x] be solution with psi1[0]=1, psi1'[0]=0 and 
psi2[x] with psi2[0]=0, psi2'[0]=1 *) (* The 
condition is: Det[{{psi1[a] - Exp[I K a], psi2[a]}, 
{psi1'[a], psi2'[a] - Exp[I K a]}}] == 0 *) (* This 
requires finding roots E for each K. *) (* Given the 
constraints, I will provide a framework that aims 
for band structure, *) (* but a full, robust solution 

for arbitrary K is quite involved for a general 
potential *) (* within NDSolve directly without a 
numerical matrix method. *) (* Let's provide a 
placeholder for a more advanced Bloch 
calculation: *) (* A common way is to solve for a 
given E and then check if the Bloch conditions are 
met *) (* by propagating the solution across the 

unit cell. *) (* This requires finding roots of an 
implicit function, which is not straightforward 
with NDSolve alone. *) (* For a full band 
structure, the Transfer Matrix Method is often 

used for 1D. *) (* For a given E, propagate {psi[0], 
psi'[0]} to {psi[a], psi'[a]} using NDSolve. *) (* This 
gives a transfer matrix T(E) = {{m11, m12}, {m21, 
m22}}. *) (* Eigenvalues of T(E) are Exp[I K a]. So, 

we solve for E when eigenvalues are on unit 
circle. *) (* Or, Trace[T(E)] = 2 Cos[K a]. So, find E 
for each K from this equation. *) (* Let's 
implement the Trace[T(E)] method for finding E 
for each K. *) (* This involves an `NDSolve` call 

inside a `FindRoot` or `Solve` for E. *) (* Define a 
function to calculate the transfer matrix for a 
given E *) transferMatrix[energy_] := 
Module[{sol, psi0, psiP0, psiA, psiPA}, sol = 

NDSolveValue[ {-hbar^2/(2*m)*psi''[x] + 
V[x]*psi[x] == energy*psi[x], psi[0] == #[[1]], 
psi'[0] == #[[2]]}, {psi[a], psi'[a]}, {x, 0, a} ] &; (* 
Construct the transfer matrix by solving for two 
linearly independent initial conditions *) {{sol[{1, 
0}][[1]], sol[{0, 1}][[1]]}, {sol[{1, 0}][[2]], sol[{0, 
1}][[2]]}} ]; (* Define the secular equation based on 
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Bloch's theorem for a given K *) (* 
Trace[TransferMatrix[E]] == 2 Cos[K a] *) 
secularEquation[energy_, K_] := 

Trace[transferMatrix[energy]] - 2*Cos[K*a]; (* 
Find the energy eigenvalues for the current K *) 

(* We need initial guesses for FindRoot. Let's try 
to find a few low-lying bands. *) (* This can be 

tricky. A range of initial guesses might be needed. 
*) (* For simplicity, let's assume we are looking 
for the lowest few bands. *) (* Initial guess range 
for E. This is crucial and problem-dependent. *) 
eGuessRange = {-2, 2}; (* Find roots of the secular 

equation. We'll use `FindRoot` and iterate. *) 
foundEnergies = {}; For[eTrial = 

eGuessRange[[1]], eTrial <= eGuessRange[[2]], 
eTrial += 0.2, Quiet[ (* Suppress warnings for 
now if FindRoot fails *) res = 
FindRoot[secularEquation[Evalue, K] == 0, 
{Evalue, eTrial}, Method -> "Newton", 
AccuracyGoal -> 5, PrecisionGoal -> 5, 
MaxIterations -> 100 ]; If[Head[res] === Rule, (* 

Check if FindRoot returned a solution *) newE = 
Evalue /. res; (* Ensure the energy is real and not 
a duplicate *) If[Abs[Im[newE]] < 10^-5 && 
!MemberQ[foundEnergies, Round[Re[newE], 
0.01]], AppendTo[foundEnergies, 
Round[Re[newE], 0.01]] (* Round to avoid 
floating point duplicates *) ] ] ] ]; {K, 

Sort[foundEnergies]} ], {K, KValues} , 
"Calculating for K=" <> ToString[K] ], "Finished 
calculations." ]; (* --- Plotting the Energy Bands (E 
vs K) --- *) ListPlot[ Flatten[Table[{K, EVal}, {K, 

energyBands[[All, 1]]}, {EVal, energyBands[[All, 
2]]}], 1], Joined -> False, (* Don't join points if 
bands are disconnected *) PlotStyle -> 
PointSize[Medium], AxesLabel -> {"K", "Energy 

(E)"}, PlotLabel -> "Energy Bands for PT-
symmetric Sinusoidal Potential", GridLines -> 
Automatic, PlotRange -> All ] Print["Calculated 
Energy Bands (K, Energies): ", 
Column[energyBands]]; (* --- Further 

Exploration: Plotting a Wavefunction for a 
Specific E and K (Optional) --- *) (* To plot a Bloch 
wavefunction, you'd pick a specific K and one of 
the calculated E values. *) (* Then, solve the 

Schrödinger equation with that E and K, using 
the Bloch boundary conditions. *) (* This would 
involve setting up `NDSolve` with the correct 
initial conditions derived from the Bloch 
condition. *) (* Example: Let's pick the lowest 
energy at K=0 (if found) and plot its real and 
imaginary parts. *) (* This is complex because we 

need to find the correct initial conditions (psi[0], 
psi'[0]) *) (* that yield a solution satisfying psi[a] 
== Exp[I K a] psi[0] etc. *) (* For the lowest energy 

at K=0: *) lowestK0Energy = Select[energyBands, 
#[[1]] == 0 &][[1, 2, 1]]; (* Assumes K=0 exists and 

has energies *) If[NumberQ[lowestK0Energy], 
Print["Plotting wavefunction for K=0, E=", 

lowestK0Energy]; (* To find the actual 
wavefunction, we need to solve the 
homogeneous equation *) (* and ensure the Bloch 
conditions are met. This means finding the 
correct psi[0], psi'[0]. *) (* For K=0, psi[a]=psi[0] 

and psi'[a]=psi'[0]. *) (* We need to find initial 
conditions {psi0, psiP0} such that: *) (* m11 psi0 + 

m12 psiP0 = psi0 *) (* m21 psi0 + m22 psiP0 = 
psiP0 *) (* This is an eigenvalue problem for the 
transfer matrix T - I. Find null space. *) tm = 
transferMatrix[lowestK0Energy]; identity = 
IdentityMatrix[2]; (* Find the null space of (tm - 
identity) *) (* {psi0, psiP0} is the eigenvector with 
eigenvalue 1. *) eigenvecs = Eigenvectors[tm, -1]; 

(* Get eigenvectors for eigenvalue 1 *) 
If[Length[eigenvecs] > 0, initialConditions = 
eigenvecs[[1]]; (* Pick one non-trivial eigenvector 
*) (* Normalize the wavefunction, e.g., psi[0]=1 *) 
initialConditions = initialConditions / 
initialConditions[[1]] /. {Indeterminate -> 1, 
ComplexInfinity -> 1}; (* Handle potential 

division by zero *) (* Solve the Schrödinger 
equation with these initial conditions *) 
psiSolution = NDSolveValue[ {-
hbar^2/(2*m)*psi''[x] + V[x]*psi[x] == 

lowestK0Energy*psi[x], psi[0] == 
initialConditions[[1]], psi'[0] == 
initialConditions[[2]]}, psi, {x, 0, a} ]; 
Plot[{Re[psiSolution[x]], Im[psiSolution[x]], 

Re[V[x]]}, {x, 0, a}, PlotLegends -> {"Re[psi]", 
"Im[psi]", "Re[V]"}, PlotLabel -> 
StringJoin["Wavefunction for K=0, E=", 
ToString[lowestK0Energy]], PlotRange -> All, 
GridLines -> Automatic ] , Print["Could not find 

initial conditions for K=0, E=", lowestK0Energy]] 
, Print["K=0 energy not found or invalid."]]; 
 
ESTIMATING FUSION RATE 
To estimate the fusion rate, we need to consider 
the tunnelling probability through the potential 

barrier. This involves: 
1. Calculating the Wave Function: The 

Mathematica code provides the wave function 
ψ(x). 
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2. Determining Tunneling Probability: The 
tunneling probability can be estimated by 
analyzing the wave function's behavior in the 

classically forbidden region. 
3. Applying Gamow Factor: The Gamow factor, 

which depends on the Coulomb barrier and the 
effective potential, can be used to estimate the 

fusion rate. 
However, to precisely calculate the fusion rate 
requires a more complex model that considers: 

 The Coulomb barrier between deuterons. 

 The overlap integral of the deuteron wave 
functions. 

 The nuclear reaction cross-section. 

 The effects of the lattice. 
 
FALACO SOLITONS AND ENHANCED 
TUNNELLING; ESTIMATING LOW-ENERGY 
FUSION RATES IN PT-SYMMETRIC 
POTENTIALS 
 
The prospect of enhancing tunnelling probability 

in low-energy nuclear reactions (LENR) through 
PT-symmetric potentials offers an intriguing 

avenue for exploration. As previously discussed, 
the PT-symmetric potential, defined by V(x)=V0.
sin(kx)+i.V1.cos(kx), can influence the wave 
function's behaviour, particularly in regions 
where tunnelling is critical. The imaginary 

component of this potential, iV1.cos(kx), plays a 
crucial role in this influence, potentially 

increasing the overlap of deuteron wave 
functions and, consequently, boosting the fusion 
rate. This enhancement, combined with the 
Gamow factor, directly impacts the fusion rate, 
which is proportional to the square of the wave 

function overlap. By strategically adjusting the 
parameters V0, V1, and k, we can investigate 

conditions that optimize this fusion rate. 
However, let's introduce a further layer of 
complexity and potential enhancement by 
considering the possibility of tunnelling 
facilitated by a mechanism we'll term "Falaco 
solitons."  (cf. R.M. Kiehn). These hypothetical 
solitons, analogous to nonlinear wave packets, 

could propagate through the crystalline lattice, 
carrying the deuterons and significantly 
increasing their tunnelling probability. The 
Falaco soliton concept suggests that the 

deuterons, rather than tunnelling as individual 
particles, could tunnel coherently as a soliton-like 

entity, drastically increasing the tunnelling 
probability. 
 
CONSIDERING FALACO SOLITONS INTO 
TUNNELLING PROBABILITY ESTIMATION 
 
To estimate the tunnelling probability with the 

Falaco soliton mechanism, we need to modify our 
approach [3-4]. Instead of calculating the 

tunnelling probability for a single deuteron, we 
must consider the soliton's wave function and its 

interaction with the PT-symmetric potential. 
Here's a conceptual outline of how we can 
approach this: 

1. Soliton Wave Function: We need to model the 

Falaco soliton's wave function, which will likely 
be a nonlinear solution to a modified Schrödinger 
equation. 

2. Soliton-Potential Interaction: We must analyse 
the interaction between the soliton and the PT-
symmetric potential, considering the soliton's 
collective behaviour. 

3. Tunnelling Probability Calculation: The 

tunnelling probability will be determined by the 
soliton's transmission through the potential 
barrier, considering its shape and the soliton's 
properties. 

4. Fusion Rate Estimation: The fusion rate will still 
be proportional to the square of the soliton's 
wave function overlap and the Gamow factor, 

but now considering the soliton's properties. 
 

 
MATHEMATICA CODE FOR ESTIMATING 
TUNNELLING PROBABILITY OF LOW 
ENERGY FUSION BY ASSUMING FALACO 
SOLITON MECHANISM 
 
Since we are introducing a hypothetical soliton, 
we will need to create a model soliton wave 
function. For the purpose of this example, we will 
model a nonlinear wave packet using a Gaussian 
shape with a nonlinear phase term. 

 
Clear["Global`*"]; (* Define the PT-symmetric 
potential *) V[x_, V0_, V1_, k_] := V0*Sin[k*x] + 
I*V1*Cos[k*x]; (* Define the Falaco soliton wave 

function (Gaussian with nonlinear phase) *) 
solitonWave[x_, A_, sigma_, alpha_, kSoliton_] := 
A*Exp[-x^2/(2*sigma^2)]*Exp[I*(kSoliton*x + 
alpha*Abs[x]^2)]; (* Define parameters *) hbar = 

1; (* Reduced Planck constant, for simplicity *) m 
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= 1; (* Soliton mass, for simplicity *) V0Value = 1; 
(* Real potential strength *) V1Value = 0.5; (* 
Imaginary potential strength *) kValue = 1; (* 

Wave number for potential *) ASoliton = 1; (* 
Soliton amplitude *) sigmaSoliton = 2; (* Soliton 

width *) alphaSoliton = 0.2; (* Nonlinear phase 
term *) kSolitonValue = 1; (* Soliton wave number 

*) (* Define the Schrödinger equation with the 
soliton wave function *) schrodingerEquation = -
hbar^2/(2*m)*D[solitonWave[x, ASoliton, 
sigmaSoliton, alphaSoliton, kSolitonValue], {x, 
2}] + V[x, V0Value, V1Value, 

kValue]*solitonWave[x, ASoliton, sigmaSoliton, 
alphaSoliton, kSolitonValue]; (* Numerical 

solution of the Schrodinger Equation, to examine 
the energy *) energySoliton = 
ParametricNDSolveValue[ {schrodingerEquation 
== E*solitonWave[x, ASoliton, sigmaSoliton, 
alphaSoliton, kSolitonValue], solitonWave[0, 
ASoliton, sigmaSoliton, alphaSoliton, 
kSolitonValue] == ASoliton, 

Derivative[1][solitonWave][0, ASoliton, 
sigmaSoliton, alphaSoliton, kSolitonValue] == 
I*kSolitonValue*ASoliton}, E, {x, -10, 10}, {E}]; (* 
Plot the soliton wave function and potential *) 
Plot[{Re[solitonWave[x, ASoliton, sigmaSoliton, 
alphaSoliton, kSolitonValue]], Im[solitonWave[x, 
ASoliton, sigmaSoliton, alphaSoliton, 

kSolitonValue]], Re[V[x, V0Value, V1Value, 
kValue]]}, {x, -10, 10}, PlotLegends -> 
{"Re[Soliton]", "Im[Soliton]", "Re[V]"}, PlotRange 
-> All] Print["Soliton Energy: ", energySoliton]; (* 

Tunneling probability estimation (simplified) *) 
tunnelingProbability = Abs[solitonWave[10, 
ASoliton, sigmaSoliton, alphaSoliton, 
kSolitonValue]/ solitonWave[-10, ASoliton, 

sigmaSoliton, alphaSoliton, kSolitonValue]]^2; 
Print["Estimated Tunneling Probability: ", 
tunnelingProbability]; 
 
Result of simulation: 

Soliton Energy: "ParametricNDSolveValue[{��
��

�
��(���.����[�]�)((0. 

+ 0.5�)Cos[�] + Sin[�])

+
1

2
(−��

��

�
��(���.����[�]�)(−

�

4
+ �(1

+ 0.4Abs[�]Abs�[�]))� − ��
��

�
��(���.����[�]�)(−

1

4
+ �(0.4Abs�[�]� + 0.4Abs[�]Abs��[�]))) =

= ���
��

�
��(���.����[�]�), True, solitonWave�[0,1,2,0.2,1]

== �}, �, {�, −10,10}, {�}]Soliton Energy: 
"Estimated Tunneling Probability: 1" 

FURTHER QUESTION 
A particular question to ask is whether the 
approach considered here of PT-symmetric 

potential is approximately close to known 
nucleus-nucleus potentials, such as Woods-
Saxon potential (see for instance: Jaqaman & 
Makjian, also Romaniega et al, ref. [9-12]). 

We explore this question as follows, for instance 
by assuming near the centre of nucleus, of around 
5-6 fm radii. 
The goal is to see if, for reasonable parameters, 

our PT-symmetric potential can approximate the 
shape of a Woods-Saxon potential in a specific 
region (e.g., near the center of a nucleus, as 
suggested by Akito Takahashi's work). 

Here's the plan: 
1. Define the Woods-Saxon Potential: This 

is a well-known phenomenological 
potential used in nuclear physics. 

2. Define the PT-Symmetric Sinusoidal 
Potential: We'll use the form:  

V0*Sin[k*x] + I*V1*Cos[k*x]. 
3. Choose Parameters: Select realistic 

parameters for the Woods-Saxon 
potential (radius, diffuseness, depth). For 
the PT-symmetric potential, we shall try 
to adjust V0, V1, and k to best fit the real 
part of the Woods-Saxon potential in the 
specified region. The imaginary part is a 
new feature of the PT-symmetric 

potential, so we can visualize its impact 
separately. 

4. Plot and Compare: Visualize both 
potentials on the same graph, focusing 
on the real parts, within the specified 
radial range (e.g., 0 to 6 nm, though 

nuclear radii are typically in 
femtometers, so we'll use consistent 

units). We can also plot the imaginary 
part of the PT-symmetric potential. 

5. Quantitative Comparison (Optional but 
good): We could use a fitting routine 
(e.g., NonlinearModelFit) to find the 
"best" parameters for the PT-symmetric 
potential to approximate the Woods-

Saxon, but for visual comparison, 
manual adjustment is often a good start. 

 
 
Mathematica code (outline only) 
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Clear["Global`*"]; (* --- 1. Define the Woods-
Saxon Potential --- *) (* Woods-Saxon potential 
parameters *) (* Typical nuclear parameters: R in 

fm, a in fm, V0 in MeV *) (* Since we're asked 
about 5-6 nm, we need to adjust the scale. *) (* 

Let's assume the "nucleus" in the cluster context 
has a larger effective radius. *) (* Woods-Saxon 

Potential: V_WS(r) = -V0 / (1 + Exp[(r - R) / a]) *) 
(* V_WS is typically negative for an attractive 
potential *) WS_V0 = 50; (* Depth of the potential 
well (e.g., in arbitrary units like MeV or eV) *) 
WS_R = 5; (* Radius of the potential (e.g., in nm, 

to match 5-6 nm discussion) *) WS_a = 0.5; (* 
Diffuseness parameter (e.g., in nm) *) 

WoodsSaxon[r_, v0_, R_, a_] := -v0 / (1 + Exp[(r - 
R) / a]); (* --- 2. Define the PT-Symmetric 
Sinusoidal Potential --- *) (* V_PT(x) = V0_PT * 
Sin[k_PT * x] + I * V1_PT * Cos[k_PT * x] *) (* 
Parameters for the PT-symmetric potential *) (* 
We will try to adjust these to visually match the 
Woods-Saxon potential *) PT_V0 = 25; (* Real part 

strength *) PT_V1 = 10; (* Imaginary part strength 
*) PT_k = Pi / 3; (* Wave number. Adjust to 
control oscillation frequency over the range *) 
PTSymmetricSinusoidal[x_, v0_PT_, v1_PT_, 
k_PT_] := v0_PT*Sin[k_PT*x] + 
I*v1_PT*Cos[k_PT*x]; (* --- 3. Explore the 
comparison range --- *) (* As suggested, near the 

center of the nucleus, around 5-6 nm radii. *) (* 
This implies we are looking at the effective 
potential for the cluster. *) (* Let's plot from 0 to 
10 nm to see the full shape. *) comparisonRange 

= {x, 0, 10}; (* x in nm *) centerRange = {x, 3, 7}; (* 
Focus region for comparison, around 5-6 nm *) (* 
--- 4. Plot and Compare --- *) (* Generate data for 
the potentials *) wsData = Table[{x, 

WoodsSaxon[x, WS_V0, WS_R, WS_a]}, {x, 0, 10, 
0.05}]; ptRealData = Table[{x, 
Re[PTSymmetricSinusoidal[x, PT_V0, PT_V1, 
PT_k]]}, {x, 0, 10, 0.05}]; ptImagData = Table[{x, 
Im[PTSymmetricSinusoidal[x, PT_V0, PT_V1, 

PT_k]]}, {x, 0, 10, 0.05}]; (* Plotting the real parts 
of the potentials *) plotReal = Plot[ 
{WoodsSaxon[x, WS_V0, WS_R, WS_a], 
Re[PTSymmetricSinusoidal[x, PT_V0, PT_V1, 

PT_k]]}, comparisonRange, PlotLegends -> 
{"Woods-Saxon Potential", "Real Part of PT-
symmetric Sinusoidal Potential"}, PlotStyle -> 
{Directive[Thick, Blue], Directive[Dashed, Red]}, 
PlotLabel -> "Comparison of Real Potential 
Shapes", AxesLabel -> {"Radius (nm)", 
"Potential"}, GridLines -> Automatic, PlotRange -

> All ]; (* Plotting the imaginary part of the PT-
symmetric potential *) plotImaginary = Plot[ 
Im[PTSymmetricSinusoidal[x, PT_V0, PT_V1, 

PT_k]], comparisonRange, PlotLegends -> 
{"Imaginary Part of PT-symmetric Sinusoidal 

Potential"}, PlotStyle -> {Directive[Thick, Green]}, 
PlotLabel -> "Imaginary Part of PT-symmetric 

Sinusoidal Potential", AxesLabel -> {"Radius 
(nm)", "Potential (Imaginary)"}, GridLines -> 
Automatic, PlotRange -> All ]; (* Combine plots 
for a comprehensive view *) combinedPlot = 
Show[ plotReal, Plot[ 

Im[PTSymmetricSinusoidal[x, PT_V0, PT_V1, 
PT_k]], comparisonRange, PlotStyle -> 

{Directive[Thick, Green, Dotted]}, PlotLegends -> 
{"", "", "Imaginary Part of PT-symmetric 
Sinusoidal Potential"} (* Add legend manually *) 
], PlotLabel -> "Comparison of PT-symmetric 
Sinusoidal and Woods-Saxon Potentials", 
PlotLegends -> {"Woods-Saxon Potential", 
"Re[PT-symmetric Sinusoidal]", "Im[PT-

symmetric Sinusoidal]"} ]; Print["Visual 
Comparison of Potential Shapes:"]; 
Print[combinedPlot]; (* --- Optional: Focusing on 
the "Center of Nucleus" region (5-6 nm) --- *) 
focusedPlot = Plot[ {WoodsSaxon[x, WS_V0, 
WS_R, WS_a], Re[PTSymmetricSinusoidal[x, 
PT_V0, PT_V1, PT_k]]}, centerRange, 

PlotLegends -> {"Woods-Saxon Potential", "Real 
Part of PT-symmetric Sinusoidal Potential"}, 
PlotStyle -> {Directive[Thick, Blue], 
Directive[Dashed, Red]}, PlotLabel -> 

"Comparison in Focused Region (3-7 nm)", 
AxesLabel -> {"Radius (nm)", "Potential"}, 
GridLines -> Automatic, PlotRange -> All ]; 
Print["Focused Visual Comparison around 5-6 

nm:"]; Print[focusedPlot]; (* --- Discussion --- *) 
Print["\nDiscussion:"]; Print["The Woods-Saxon 
potential describes a realistic attractive potential 
well for nucleus-nucleus interaction."]; Print["Its 
parameters (depth, radius, diffuseness) can be 

adjusted to model various systems."]; Print[""]; 
Print["The PT-symmetric sinusoidal potential 
(Re[V_PT] = V0_PT*Sin[k_PT*x], Im[V_PT] = 
V1_PT*Cos[k_PT*x])"]; Print["is fundamentally 

different in shape. It oscillates and has an 
imaginary component."]; Print[""]; Print["When 
comparing the *real part* of the PT-symmetric 
sinusoidal potential to the Woods-Saxon 
potential:"]; Print["- The PT-symmetric potential 
is inherently oscillatory. It cannot accurately 
reproduce the smooth, single-well shape of the 
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Woods-Saxon potential across a broad range."]; 
Print["- However, in a *very localized region*, 
such as around a specific radius (e.g., 5-6 nm as 

specified), one might be able to tune 'PT_V0', 
'PT_k' to make a *segment* of its oscillation 

roughly match the slope or a part of the Woods-
Saxon potential curve."]; Print["- The provided 

plots show that the real part of the sinusoidal 
potential can, at best, mimic a *small portion* of 
the Woods-Saxon potential's shape (e.g., its rising 
edge or a flat region) depending on 'k' and 
'V0_PT'."]; Print["- The imaginary part of the PT-

symmetric potential (V1_PT*Cos[k_PT*x]) 
introduces a non-hermitian term, which is the 

defining characteristic of PT-symmetry in this 
context. This part has no direct counterpart in the 
standard real Woods-Saxon potential and would 
represent gain/loss in the quantum system."]; 
Print[""]; Print["Conclusion:"]; Print["The PT-
symmetric sinusoidal potential, as defined here, 
is not generally 'approximately close' to a Woods-

Saxon potential in terms of its overall shape for 
nucleus-nucleus interactions."]; Print["Its 
oscillatory nature and inherent imaginary 
component make it fundamentally different from 
the smooth, real, attractive well of the Woods-
Saxon potential."]; Print[""]; Print["If the intention 
is to model a *local effect* or a *small deviation* 

from a Woods-Saxon potential using PT-
symmetry, then fine-tuning the PT-symmetric 
potential parameters to match a specific feature 
or region could be explored further, possibly 

using optimization algorithms for parameter 
fitting."]; Print["However, as a general 
replacement for a Woods-Saxon potential for 
describing the fundamental attractive nucleus-

nucleus interaction over a broad range, it is not a 
suitable approximation."]; Print[""]; Print["The 
PT-symmetric potential might be more 
appropriate for describing specific phenomena 
like resonant states, open quantum systems, or 

effective potentials in a many-body environment 
where gain and loss mechanisms are present, 
rather than the static average interaction between 
two nuclei."]; 
 
IMPLICATIONS AND FUTURE DIRECTIONS 
This conceptual framework suggests that the TSC 

model may be a specific instance of a broader 
phenomenon occurring within crystalline solids 
with tetrahedral symmetry. Approximating the 
screening potential using PT-symmetric 

potentials provides a valuable tool for analysing 
the dynamics of the deuteron clusters. 
Future research should focus on: 

 Developing more refined PT-symmetric potential 
models that accurately represent the crystalline 
environment, that incorporate the Coulomb 
barrier and lattice effects. 

 Investigating the influence of different lattice 
structures and excitations on the formation and 
stability of tetrahedral clusters. 

 Performing numerical simulations to calculate 
the wave function overlap and tunnelling 
probability. 

 Performing numerical simulations to validate the 
theoretical predictions, including experimental 
validation of the existence of the PT-symmetric 
screening potential. 

 The Falaco soliton model is a hypothetical 

concept, and further research is necessary to 
validate its existence and properties [3-4]. 

 The Mathematica code provided is a simplified 
example and requires further refinement to 

precisely model the soliton's behaviour and 
tunnelling probability. 

 The Gamow factor needs to be incorporated into 
the fusion rate estimation for a more accurate 
result. 

 It can be expected that a much improved result of 
the above new model of CMNS can be obtained 
by introducing laser focusing on the tetrahedral 
crystalline solid in question, i.e. in order to trigger 
phase transition induced by laser-matter 
interaction, see for instance ref. [7-8]. 
By combining theoretical analysis with numerical 
simulations, we can gain a deeper understanding 
of the role of PT-symmetric potentials in low-

energy nuclear reactions. 
 
CONCLUDING REMARK 
 
By integrating Takahashi's TSC model with the 
principles of PT-symmetric quantum mechanics, 
we can develop a more comprehensive 
understanding of LENR in crystalline solids.  
The present article is a follow-up to previous 

article from us, which first described this 
argument (Infinite Energy Magazine, 2008). By 

integrating the Falaco soliton concept with the 

PT-symmetric potential framework, we can 
explore new possibilities for enhancing tunneling 
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probability and achieving higher fusion rates in 
LENR. 
This approach can be considered as new avenues 

for exploring and potentially harnessing low-
energy nuclear processes. 
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