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ABSTRACT We have studied the electronic structure of silicon dopants which is necessary for 

implementation of spin based qubits in silicon. Description of dopant in silicon is 
therefore useful both as a benchmark and for determining the details of the 

electronic structure of an isolated dopant which can subsequently be used to 

calculate more accurate spin dependent scattering cross sections. These calculation 
have been able to perform large scale calculations using the computational 

resources. We have performed two electron Hartree-Fock calculations within 
effective mass theory. These efforts include calculating the effects of applied electric 

and magnetic fields and the coupling of two donors via exchange interaction. Tight 
binding calculations have also been performed including a calculation of the 

quadratic stark coefficient of the hyper interaction. We have found an 
unprecedented level of structure in the doping potentials and densities and wave 

functions. Due to oscillatory nature of doping potentials, the exchange coupling 

between qubits obtained by extrapolating our results to smaller distances was found 
to be less than estimates based on the Heitler-London approximation. The obtained 

results were found in good agreement with previously obtained results. 
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INTRODUCTION     
 

Kohn and Luttinger [1] studied that the theory 

of group-v dopants such as phosphorus in 
silicon is useful for describing the quantum 

nature of the electrons in these systems as well 
as for developing schemes to circumvent one of 

the most challenging aspects of solid-state 
quantum computers, namely environmental 

decoherence [2-5]. In order to provide a bench 
mark for such theories and also to use as a 

starting point for building efficient and accurate 

tight binding methods, an ab initio description 
of dopants in silicon is desired. The size of the 

systems required to describe doped silicon at or 
near the single dopant limit is large, making 

such a description computationally expansive. 
In this work, we have presented large scale 

density functional theory calculations for 
phosphorous doped silicon suprecells with up 

to 432 atoms. We have made comparisons to 

other theoretical works [6-9] to determine what 
can and cannot be captured by approximate or 

single-electron theories for the doped silicon 
systems. Previous efforts to describe the 

electronic structure of silicon dopants included 
effective mass approaches beginning with the 

work of Kohn and Luttinger and continuing 
with many others [10-15] including Fang etal, 

who performed two electron Hartree Fock 

calculations within effective mass theory [16]. 
Tight binding calculations have also been 

performed [17-19] including a calculation of the 
quadratic stark coefficient of the hyperfine 

interaction which has reproduced 
experimentally measured values more 

accurately than effective mass theory [20]. 
Density functional theory studies [21] evaluated 

the use of mixed Pseudopotentials which treated 

the dopant and silicon atoms in the layer using 
the same core potential and compared them to 

all atom calculations. These density functional 
theory calculations and a number of additional 

calculations [22] showed a large amount of 
disagreement for calculated properties such as 

the valley splitting.  
 

 

 
 

METHOD 
 

Face-centered cubic lattices of doped silicon 

were considered for variable dopant ratios by 
substituted one phosphorous atom in unit cells 

with 53, 127, 249 and 431 silicon atoms. We have 
used Perdew-Burke-Ernze-rhof density 

functional with an ultrasoft Pseudopotential for 
phosphorous and a norm-conserving 

Pseudopotential was calculated using FHI98PP 
for silicon. A plane wave energy cutoff of 65 Ry 

was chosen based on convergence of the total 

energy and pressure in the smallest supercell- K-
space sampling was performed using a 

Monkhorst pack grid of  8 8 8   of 54 atoms, 

6 6 6   of 128 atoms 4 4 4   of 250atoms and 

2 2 2   of 432 atoms grid points. For the energy 

and properties of bulk silicon, a two atom silicon 
cell was used with a grid of 20 20 20   k-

points. In this cell one silicon is placed at the 
origin and another is placed at the point 
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, the two silicon atoms 

are repeated at every integer multiple of the 

basis vectors. The lattice constant of the doped 
supercells was determined as multiples of the 

5.46Å lattice constant for bulk silicon computed 
with the Pseudopotential used in this stuydy. 

The phosphorous dopants repeat along the 
directions of the basis vectors. The Gram 

Schmidt procedure was used to find the 

orthogonal direction.   1 2 0 . In the 

calculations with 432N   atoms, all of the atoms 

were allowed to move during the simulation. 
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RESULTS AND DISCUSSION     
 

Graph (1) shows the plot of the doping potential 

as a function of distance from (001) layer of 
dopants. In graph (1) (a) a full two dimensional 

cut through the potential is given in the plane 
perpendicular to the (001) plane, and the in 

graph (1)(b) and (1)(c) the potential is shown in 
a slice of this plane which connects two dopants. 

In graph (2) the mixed Pseudopotential doping 
potentials are much smoother then in graph (1) 

(b), especially in the region around the dopant. 

In graph (1) (b) there is a significant amount of 
structure in the potential near the dopant itself. 

Minor effects of the silicon atoms in the next 
layer of the crystal are also evident in graph (1) 

(c) when the effects of geometric relaxation are 
included. These results are for doping densities 

near the single dopant limit, a study of the effect 

of  -layer of dopants would require very large 

cells which would likely have thousands of 

atoms. Additionally, the dopant potentials are 

plane averaged while we have plotted straight 

point potentials. Averaging does not eliminate 
the structure in our potentials but instead 

reduces the peak potential relative to the 
somewhat noisy structure of the atomic lattice. 

Oscillations are due to interactions with 
electrons in the shells below the valence shell. If 

these calculations were performed without 
using Pseudopotentials, which reduce 

oscillations from core electrons and replace them 

with a smooth potential the potential would 
most likely oscillate to an even greater degree. 

These oscillations, as well as possible in 
optimized geometries due to the silicon lattice 

distortions represent qualitative differences 
between density functional theory and effective 

mass theory. Mixed Pseudopotential in order to 
estimate the potential as a function of the 

distance from a layer of dopants. The obtained 

results were compared with previously obtained 
results of theoretical and experimental research 

works and found in good agreement. 

   

 

Graph 1: The doping potentials  
431si P siV V  as function of distance from the doping layer.  
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Graph 2:  Magnitude of the zero-field exchange coupling calculated by density functional theory in this 
work (Circles), and in the Heitler-London approximation with effective mass theory wave functions.  
 
CONCLUSION 
 
We have studied electronic structure of 

phosphorous doped bulk silicon and its use in 

spin qubits for quantum computation. Several 
properties relating to their use as spin qubits for 

quantum computation were found. We have 
found that the electron density around the 

dopant leaded to non spherical features in the 
doping potentials, such a trigonal lobes in the 

(001) plane at energy scales of +12 eV near the 
nucleolus and of -700 meV extending away from 

the dopants. These features are generally 

neglected in effective mass theory and affected 
the coupling between the donor electron and the 

phosphorous nucleus. Our density functional 
calculations reveled in the densities and 

potential of the dopants which are not evident in 
calculations that do not include explicit 

treatment of the phosphorous donor atom and 
relaxation of the crystal lattice. The doping 

potentials provide input for scattering 

calculations, including calculations in which the 
current carrying electrons are confirmed to a 

two dimensional plane to model electrical 
readout schemes for silicon quantum 

computation. The obtained results were found 
in good agreement with previously obtained 

results.  
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