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ABSTRACT We have studied the electronic properties of graphene nanoribbons with zigzag armchair 

edges. We have calculated the local density of states, the single particle special function, the 
optical conductivity and the conductance for different geometries. We have also studied the 
disordered effects. The influence of disorder on the transport behavior of tight binding 
approach has been accepted. The conductance of edge contacted graphene nanoribbon 
sensitivity was found dependent on the lead graphene nanoribbon matching conditions. In 
this respect armchair graphene nanoribbon enabled a somewhat better current injection. 
Dangling bonds on the graphene nanoribbon side of the interface substantially reduced the 
conductance. The typical conductance of disordered graphene nanoribbons sandwiched 
between graphene leads in a junction set up exhibited a negative differential conductivity 
whenever new transport channels become available by increasing the Fermi level. This 
accentuates the efficiency of Anderson localization function manifested a precursor of the 
transition from a current carrying to an Anderson disorder induced insulating behavior which 
takes place when the size of the disordered active graphene region becomes infinite. The 
obtained results were found in good agreement with previously obtained results. 
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1. INTRODUCTION     
 
Yuan et al. [1] studied properties of graphene within the Dirac cone approximation, only transitions across the 
Dirac point that are vertical in momentum space are allowed leading to a frequency independent absorption of 
undoped graphene. For doped graphene the optical response is greatly reduced for frequencies smaller than 
twice the absolute value of the Fermi energy due to Pauli’s exclusion principle, while for larger frequencies it is 
roughly given by universal ac conductivity [2]. Breaking through in graphene fabrication and pattering 
facilitated the realization of graphene based electronics, plasmonics and optics properties. Graphene 
nanoribbons with varying widths down to a few nanometers and graphene quantum dots have been prepared and 
operated with field effect transistor, filter polarizer or electronic lens functionalities. The striking electronic 
properties of these graphene nanoribbon based nanostructures strongly dependent on their geometry and edge 
shape [3-5]. Graphene nanoribbons with zigzag or armchair shaped edges develop specific band structures [6,7].  
Thereby for a realistic modeling of the graphene nanoribbons quasiparticle energies and band gaps, edge 
passivation, edge closure and edge bond relaxation have to be taken into account [8,9]. In narrow armchair 
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graphene nanoribbons with hydrogen termination atomic sextets largely affect the band gap and consequently 
the transport properties [10]. For hydrogen terminated zigzag graphene nanoribbons the spin polarization of 
edge states comes into play. As a matter of course the enhanced screened coulomb interaction gives rise to 
significant self energy correlations for both zigzag and armchair graphene nanoribbons [11]. The leads 
connecting the active graphene element to the electronic reservoirs always play an important role, just as the 
interfaces in graphene junctions and the substrate. Mucciolo and Lewenkopf [12], studied transport through 
graphene and graphene nanoribbon based devices are strongly affected by disorder. i.e. screening potentials 
caused by intrinsic impurities, bulk defects induced by the substrate, ripples, edge roughness, adsorbents atoms 
at unsaturated dangling bonds at the boundary of the sample and adatom on graphene’s open surface. 
Tikhonenko et al. [13] showed that the chirality of the charge carrier’s quantum interference triggered even 
weak antilocalization. The observations of coulomb diamond like features in device conductance suggested that 
charge transport in graphene nanoribbons occurs through quantum dots forming along the ribbon due to a 
disorder potential induced by charged impurities [14]. WeiBe and Fehske [15] used highly efficient Chebyshev 
expansion. Welle Be et al. [16] used polynomial and Duta [17] used Green function techniques to analyse the 
electronic properties of graphene nanoribbons with zigzag and armchair edges as well as disordered normal 
conductor graphene or graphene nanoribbon junctions. We have calculated the local density of states, the optical 
conductivity and the conductance of different geometries. The influence of disorder on the transport behavior of 
graphene nanoribbons using tight binding approach was made at a first reasonable starting point [18-21].  
Pandey et al. [22] studied ensemble Monte Carlo simulations for band structure in bulk materials, especially in 
the high field region. All relevant scattering mechanisms including impact ionization were used in the case of 
zinc sulphide, the use of exchange formalism with a local density approximation band structure for simulations 
of electron transport has led to modify results for the drift velocity and the average energy. Singh et al. [23] have 
developed a model for the miniband gap and the related non parabolic dispersions at the limiting of bismuth 
antimony. They have used an interactive one dimensional two band model and developed an analytical 
approximation for this model. They have studied band edges and electronic phases as a function of grow the 
orientation, wire diameter and stoichiometry, including the semimetal phases, the indirect semiconductor phases 
and the direct semiconductor phases. They have found that bulk materials of bismuth antimony and their alloys 
have the same symmetry with a rhombohedral lattice structure. The obtained results were compared with 
previously obtained results. 

 
2. METHOD 
 
The local properties of a graphene sample with broken translational invariance are best reflected by the local 
density of states  
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where † 0ii c  and n  is a single electron eigen state of H with energy En. The local density of states is 
directly probed by scanning tunneling microscopy. Theoretically  i E be determined to defacto, arbitrary 
precision by the kernel polynomial method, which is based on the expansion of the rescaled Hamiltonian into a 
finite series of Chebyshev Polynomials. Exploiting the local distribution approach, the distribution of the local 
density of states has been used to distinguish localized from extending states, e.g. in order to address the 
problem of Anderson localization in graphene. In addition to the extraordinary bulk properties of graphene finite 
graphene structures have very surface states that do not exist in other systems. The spectrum of graphene 
nanoribbons depends on the nature of their edges: Zigzag or armchair. A zigzag graphene nanoribbon with 
periodic boundary conditions along the x-direction presents a band of zero energy modes. This band is due to 
surface states living at and close to the graphene edges. The density of states of armchair graphene nanoribbons 
is gapped at E=0. Zigzag graphene nanoribbons with hydrogen pasivation also have a gapped band structure 
provided that edge magnetization exists, which is not very likely at least at room temperature. Localized staets 
also appear of a boundary inside the graphene material exists. The magnetizations show that the internal 
boundaries are of zigzag and armchair types. The four zigzag boundaries give reason to a band of edge states 
that show up by a strong peak in the averaged density of states,  
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for such graphene nanoribbons with voids the localized states located at the sublattice with open bonds do not 
allow an analytical solution. To model a rough graphene boundary, we repeatedly remove edge sites carbon 
atoms with only two nearest neighbors from the graphene nanoribbon, just by setting the corresponding 
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with probability 1
2

p 
. If we create by chance antenna carbon atoms with only one neighbor or isolated atoms, 

these have been removed as well. Graphene nanoribbon with ideal armchair edges along the x-direction, the 
typical sample depicted was obtained after 30 reiterations.  Both the mean density of state and local density of 
states signal the existence of localized edge states which arise because small zigzag regions are generated at the 
graphene nanoribbon boundary by the cropping process. The Kernel polynomial method has been used to 
calculate spectral functions and dynamical correlation functions for disordered graphene nanoribbons. The 
influence of disorder on the electronic properties of graphene and graphene nanoribbons is of particular in the 
vicinity of the Dirac point. We have used the short range Anderson disorder   
 

,
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and determined the momentum resolved single particle spectral function at zero temperature T=0. 
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where   k
  is not a Bloch eigen state of infinite graphene due to its sub lattice structure. The obtained results 

were compared with previously obtained results. 
 
 
3. RESULTS AND DISCUSSION     
 
Figure (1) shows the results for  ,A k E

  along paths following Brillouin zone boundary, thereby meeting the 

Dirac points K and K'. The discreteness of the spectra in the vertical direction is a finite size effect due to small 

a
z

N  in graphene nanoribbons with 
a a
z z

N N L   sites, causing a sequence of quasi one dimensional bands with 

Van Hove singularities. They primarly appeared along the ' ' .K M KM  direction for armchair or zigzag 
graphene nanoribbons. These finite size signatures have been suppressed by disorder away from the Dirac points 
but persist near k,k' even for relatively large values of  as shown in Figure (1)(b), indicating that  0E   Dirac 
fermions are less affected by Anderson disorder. The almost dispersion less band of edge states, appeared in 
zigzag graphene nanoribbons along  'KM MK for weak disorder as shown in Figure (1)(c) is destroyed for 
strong disorder, where only a few localized edge states reside near the K, K' points as shown in Figure (1)(d). 
The valuable information about the transport properties have been obtained from temperature and filling 
independent current matrix element density  
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The trace has been evaluated by a stochastic method using a small number. For graphene, the current matrix 
element density exhibited finite spectral weight only on an ‘x’ shaped support in the 

1 2E E  plane. Where the 

line
1 2E E . E describes the ac optical response due to vertical *   interband transitions, the line 1 2E E  

accounts for the dc conductivity 0  . For graphene nanoribbons boundary affected strongly affect these 
signatures.  
 
Figure (2) shows  1 2,j E E  and     for the zigzag case. The spectral signature at 

1 2E E   widens out. Of 
higher significance there have been additional ‘+’ –shaped absorption feature which has been attributed to 
optical transitions between edge and bulk state. The optical conductivity at fixed   according to second line is 
given by and integral over 
 
 1 2,j E E E E    ,  
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where the Fermi factors filter out contributions located in the second and fourth quadrant only. They suppress 
    below  2 FE  , yielding a step feature. If compared to the optical response of bulk graphene, showing 

besides this step a single maximum at the density of state Van Hove singularity point 2t   only, the edge 
states in zigzag graphene nanoribbons leaded to a further step at  FE   and an additional local maximum at 

t   is seen in the right panel. For 0 , we have found a Drude peak at   0FE   i.e. at finite filling, 
whereas 

0   at the charge neutrality point 0FE  . We have the study of disordered graphene nanoribbons 
encased by ordered graphene or metal leads. Defects and impurities are inevitable in graphene based devices.  
 
Anderson disorders with one site potential drawn from a box distribution have been used to model the effects of 
short range impurity scattering by local imperfections. To characterize the transport through disordered 
graphene Junctions the conductance was analysed. The obtained results were compared with previously 
obtained results of theoretical and experimental research works and were found in good agreement. 
 
 

 

 
 
Figure 1: Armchair and zigzag GNRs and orientation of the corresponding Brillouin zine (in longitudinal 
directions PBC are applied). Bottom panels: Averaged spectral function  ,A k E

  along the red paths indicated in 

the top panels for Anderson disordered armchair 
 

 
 
Figure 2: Current matrix-element density  1 2,j E E (left panel) and optical conductivity     (right panel). 
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4. CONCLUSION 
  
We have studied the electronic properties of graphene nanoribbons with zigzag armchair edges. Transport 
through graphene and graphene nanoribbons based devices have strongly affected by disorder, i.e. scattering 
potentials caused by intrinsic impurities, bulk defects induced by the substrate, ripples, edge roughness, 
adsorbent atoms at unsaturated daughling at the boundary of the sample and adatoms on graphene’s open 
surface have been found. We have also studied the transport of charge carriers through graphene structures. The 
kernel polynomial and Green function techniques allowed us to treat actual sized samples beyond the Dirac cone 
approximation. We have shown that localized edge states dominate the mean density of states of graphene 
nanoribbons which feature voids or rough surfaces near the charge neutrality point. The sites in the edge region 
having vanishing amplitude entail a filamentary network of the local density of states in the bulk. For disordered 
graphene nanoribbons both the averaged single particle spectral function and optical conductivity indicated that 
disorder tended to suppress the finite size effects caused by the geometry of the nanoribbon. We have found that 
the contacts and bulk disorder have a major impact on the electronic properties of graphene based devices. In 
narrow armchair graphene nanoribbons with hydrogen termination automatic sextered largely affected the band 
gap and consequently transport properties. The couplings have significantly influenced the band gap and hence 
the transport properties of graphene nanoribbons and Anderson localization owing to bulk disorder. For doped 
graphene the optical properties is greatly reduced for frequencies smaller than twice the absolute value of the 
Fermi energy due to Pauli’s exclusion principle while for larger frequencies is roughly given by a universal ac 
conductivity. The efficiency of Anderson localization effected at the band edges of electronically low 
dimensional systems. For graphene nanoribbon junctions, the conductance distribution function manifested a 
precursor of transition from a current varying to an Anderson disorder induced insulating behavior which taken 
place when the size of the disordered active graphene region became infinite. The obtained results are found in 
good agreement with previously obtained results.  
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