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ABSTRACT We have studied the quantum transport through a quantum dot with electron-

phonon interaction. For a generic model which is widely used to explain phonon 
coupled electron transport in quantum dots and single molecule junctions. We have 
shown that the system exhibit pronounced bistability even in out of equilibrium 
situations when the value of the bias is far from the linear response regime. The 
analysis revealed that the bistability increased for decreasing phonon frequency and 
depended on the electron-phonon coupling. We have developed an approach based 
on reduced density matrix formalism. The formalism is combined with the 
multilayer multi configuration time dependent Hartree method to numerically 
converge the memory Kernel at short times until it decays and infer from it the 
dynamics of the system at longer times and the approach to steady state. The 
relaxation to steady state and the appearance of the bistability depended on the 
phonon frequency and the strength of the electron-phonon coupling. We have found 
that the phenomenon persisted over time scale. The obtained results were found in 
good agreement with previously obtained results. 
 

KEYWORDS Quantum Transport, quantum dot, electron-phonon interaction, coupling, bistability, 
density matrix. 

 
 
INTRODUCTION     
 
The dependence of the steady state current on the initial occupation have been raised in the context of 
inelastic transport through nanoscale quantum dots1-6. Anders et al.7, Schmittec Kert8 and White9 
presented numerical brute force approaches, such as time dependent numerical renormalization 
group technique, eterative10-12 or Stochastic13-14 diagrammatic methods and wave function based 
approaches have been very fruitful but are limited in the range of parameters and time scales have 
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been studied. Doyon and Anderi15 studied the existence of unique steady state in strongly correlated 
quantum systems out of equilibrium is a subject of great interest. For the case of the Anderson 
impurity model, it has been argued using the Bethe ansatz that single steady state solution existed. 
Kurth et al.16 presented calculations of the nonequilibrium current based on time dependent density 
functional theory seem to indicate that at long times the system reached a dynamical state 
characterized by correlation induced current oscillations. Jee et al.17 studied the role of coupling of 
electrons to longitudinal optical phonons in polar semiconductors on formation of long range bound 
states and this coupling leaded to acoustic phonons was reduced to the renormalization of the carrier 
effective mass.  

 
Kumar and Singh18 studied the quantum transport properties of two dimensional electron gases in 
Hall regimes. They determined the total current from the bulk Green function. This quantum 
mechanical property was exact result that holds as long as the high field expansion is applicable. They 
have numerically computed the hall conductance including self consistent equation which is 
independent of magnetic field. Sharma et al.19 studied transport of a long quantum wire with one 
sided surface disorder in the presence of a perpendicular homogeneous magnetic field. It was found 
that irregular motion was induced by scattering at the disordered surface. In the corresponding 
mixed phase space they found direct regular and irregular motion, which were quantum 
mechanically coupled by dynamical tunneling. Kumari et al.20 studied the transport properties of 
carbon wire between zig zag carbon nanotubes and armchair electrodes. The gap width between the 
electrodes was modulated and the corresponding conductance variation of the junction was 
calculated. It was found that transport properties of the junctions were significantly affected by the 
choice of chirality. For zig zag junctions ON and OFF states were observed. These corresponded to 
cumulence and polygene structures. Sah et al.21 made systematic study of the electronic transport in 
realistic edge disordered graphene nanoribbons with zigzag and armchair edges. Three different 
defect topologies were examined. They found that the electron-electron interactions gave rise to 
charge redistribution towards the edges of th ribbons when gating shifted the ribbon Fermi energy 
away from the Dirac point. Cohen et al.22 presented that memory kernel decays on much shorter time 
scales compared to the reduced density matrix. Pistolesi etal23 studied the case for zero temperature 
and smaller bias voltage as predicted by approximate methods for a single phonon. Dzhioev and 
Kostov24 studied adiabatic effective potentials for four frequencies and showed two distinct minima 
corresponding to two possible stable configurations25. The obtained results were compared with 
previously obtained results. 

  
METHOD 
 
We have considered a generic model for charge transport through a quantum dot with electron-
phonon interaction. According to this model we have 
 

S B SBH H H V    
where  

†
S dH d d  

 
is the system or quantum dot Hamiltonian fermionic creation / annihilation operators † /d d  and 
energy ,d B l phH H H   ,  

where  
†

,
l k k k

k L R
H a a



   

 
represents the non interacting leads Hamiltonian with fermionic creation/ annihilation operators 

† /k ka a  and  
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Represents the phonon bath bosonic creation / annihilation operators † /b b   for phonon mode  

with energy  . The coupling between the system and the bath is given by SB l phV V V   where 

 

 † * †

,
l k k k k

k L R
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is the coupling between the system and the leads with coupling strength and  

 † †
phV d d M b b  



   

 
Is the coupling between the system and the phonon bath, where M is the electron-phonon coupling 
to mode .  
 
The coupling strengths were parameterized by various spectral functions. The dot leads coupling 
terms were determined from the spectral density 
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where  a tight binding model was employed with 0.2 eVa   and , 1eV. L Rb  .  is the chemical 
potential of the left (L) or right (R) lead. The electron-phonon coupling were determined from a 
phonon spectral function  
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taken to be of ohmic form. The dimensionless Kondo parameter 2
C





, determines the overall 

strength of the electron-phonon couplings, where  
2 1M d J



 
  

    is the reorganization 

energy and C  is the characteristic phonon bath frequency.  
 
 RESULTS AND DISCUSSION     
 
Figure (1) shows the influence of the electron-phonon coupling strength   and the dot energy d  on 
the non equilibrium dynamics. We have compared the time dependence of  for four different initial 
conditions. In the upper panel, we have shown the corresponding adiabatic effective potentials for 
four values of  . For small values of   the bistability disappeared as shown in Figure (1). This is 
consistent with the adiabatic effective potential has a single minimum for 13000 cm  . Comparing 

the relaxation time for 2000   and 13000cm , we have found the latter is slower  for 1a  . When 

  is further increased to 4000 cm-1 the relaxation time stretched more and the system decayed to a 
different steady state depending on the value of a , again consistent with the appearance of two 
stable configurations in the corresponding adiabatic effective potential. While the reduced density 
matrix shows a distinct bistability. In the upper right panel as shown in Figure (1) show the results for 
the case when 12000cm   and 0.25 eVd  . The effective adiabatic potential for this case 
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shows two distinct minima. The barrier is lower than for 14000cm   and 0.5 eVd   comparing 

the two right panels of Figure (1), we found that as   and d are decreased and the time scale to 
relax to steady state also decreased, consistent with the adiabatic tunneling. The time dependent 
approach developed describes the non-equilibrium dynamics numerically exactly only over a certain 
time scale. The long ranged memory effects not captured by the cut off approximation resulted in 
switching between the different states and leaded to a unique steady state. This is for strong non 
equilibrium situations and or high temperature and preliminary results indicate that at higher bias 
voltages the bistability vanishes. This is also the case for zero temperature and smaller bias voltages 
as predicted by approximate methods for a single phonon. We have found that the bistability persists 
even for a finite bias assuming that beyond the cut off time the memory kernel decays as a power law. 
The obtained results were found in good agreement with previous results. 
 

 
Figure 1: The adiabatic effective potentials for the different values of . 
 
CONCLUSION 
 
We have studied the problem based on bistability and the uniqueness of the steady state in a system 
with electron-phonon interaction under nonequilibrium conditions caused by a finite bias voltage. We 
have developed a approach based on a reduced density of state matrix formalism. We have 
considered a generic model for charge transport through a quantum dot with electron-phonon 
interaction. Our approach offered exact dynamics of quantum system driven out of equilibrium on 
time scale not previously accessible. The reduced density of state matrix formalism provided means 
to prove analytically that if a steady state exists then it must be unique. We have found that relaxation 
to steady state and appearance of the bistability depends on the phonon frequency and the strength of 
the electron-phonon couplings. We have found a unique steady state that existed regardless of the 
initial electronic preparation of the quantum dot, consistent with the converged numerical results. We 
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have also found that the bistability persists even for a finite bias assuming that beyond the cutoff time 
the memory Kernal decays as a power law. The obtained results were compared with previously 
obtained results of theoretical and experimental works and were found in good agreement.  
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