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ABSTRACT 

Objective: This study aims to compare the prolonged release profiles of Aceclofenac 

encapsulated in nanostructured lipid carriers (NLCs) prepared using Glyceryl Behenate 

(Compritol 888 ATO) and Tristearin, evaluating which lipid matrix offers more effective 

sustained drug release. 

Materials and Methods 

Materials: Aceclofenac, Glyceryl Behenate, Tristearin, MCTs, Polysorbate 80, Soy Lecithin, 

PVA, dichloromethane, ethanol. 

Methods: NLCs were prepared by melting solid and liquid lipids, dissolving Aceclofenac, and 

adding surfactants and stabilizers. The mixture was homogenized and ultrasonicated. Particle 

size, zeta potential, and encapsulation efficiency were measured. In vitro release studies were 

conducted using dialysis bags in PBS, analyzing Aceclofenac content via UV-Vis 

spectrophotometry. 

Components of NLCs 

The major components of NLCs include solid lipids, liquid lipids, surfactants, and surface 

modifiers. Solid lipids form the solid lipid core of the NLCs and act as the matrix-forming lipids. 

Various solid lipids along with their melting point and compositions used in the NLC 

formulations. On the other hand, liquid lipids (oils) are the lipophilic excipients that are used to 

integrate the solid lipid core and to reduce its crystallinity. In the preparation of NLCs, two types 

of oils are used: natural oil or synthetic oil, and most of the drugs are dissolved in synthetic oils. 

Results and Discussion: Glyceryl Behenate-based NLCs had a mean particle size of 150 nm and 

a zeta potential of -25 mV, while Tristearin-based NLCs were 200 nm with a zeta potential of -

22 mV. Encapsulation efficiencies were 85% and 80%, respectively. Glyceryl Behenate-based 

NLCs demonstrated prolonged Aceclofenac release over 48 hours, whereas Tristearin-based 
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NLCs released the drug within 24 hours. The higher encapsulation efficiency and smaller particle 

size of Glyceryl Behenate-based NLCs contributed to a more sustained release. 

Conclusion: Glyceryl Behenate-based NLCs provide a more effective sustained release of 

Aceclofenac compared to Tristearin-based NLCs, attributed to better encapsulation efficiency, 

stability, and release profile, making them a superior choice for controlled release formulations. 

Keywords: Aceclofenac, Glyceryl Behenate, Tristearin, Nanostructured Lipid Carriers 

INTRODUCTION 

Nanostructured lipid carriers (NLCs) represent a significant advancement in the field of drug 

delivery systems.[1] They offer a versatile platform for enhancing the solubility, stability, and 

bioavailability of various therapeutic agents.[2] NLCs are particularly advantageous for the 

delivery of poorly water-soluble drugs, such as Aceclofenac, a nonsteroidal anti-inflammatory 

drug (NSAID) widely used for its analgesic and anti-inflammatory properties.[3] Aceclofenac, 

while effective, is hindered by poor aqueous solubility and gastrointestinal side effects, limiting 

its clinical utility. The encapsulation of Aceclofenac in NLCs provides a promising strategy to 

overcome these challenges by enhancing drug solubility, prolonging drug release, and potentially 

reducing gastrointestinal irritation.[4] 

 
Figure: Components of NLCs 

The structure of NLCs involves a solid lipid core, which is blended with liquid lipids, creating a 

disordered matrix that can accommodate a higher drug load and reduce drug expulsion during 

storage.[5] The selection of appropriate lipids is crucial for optimizing the performance of NLCs. 

Glyceryl Behenate (Compritol 888 ATO) and Tristearin are two solid lipids with distinct 

properties that influence the physicochemical characteristics and drug release profiles of NLCs.[6, 

7] Glyceryl Behenate is known for its lower melting point and excellent emulsification properties, 

which can contribute to smaller particle sizes and higher drug encapsulation efficiencies. In 

contrast, Tristearin, with its higher melting point and more crystalline structure, offers potentially 

greater stability but may result in larger particle sizes and different release kinetics.[8, 9] 
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This study aims to conduct a comparative analysis of Glyceryl Behenate-based and Tristearin-

based NLC formulations for the prolonged release of Aceclofenac. By evaluating key parameters 

such as particle size, zeta potential, encapsulation efficiency, and in vitro release profiles, this 

research seeks to determine the optimal lipid for developing sustained-release formulations of 

Aceclofenac. The findings of this study could provide valuable insights into the design of NLCs, 

potentially leading to more effective and patient-friendly NSAID therapies. Additionally, 

understanding the impact of lipid composition on NLC performance can guide the development 

of tailored drug delivery systems for a wide range of pharmaceutical applications. 

NLCs are a new type of DDS and formulation that improves stability and loading while 

permitting the production of concentrated dispersions. Many pharmaceutical companies have 

developed well-established industrial processes for producing large-scale batches of 

nanostructured lipid carriers, but all major parameters such as lipid choice, surfactants, other 

essential excipients, and preparation methods vary, resulting in differences in particle shape, size, 

phase transition, solubility, and drug bioavailability, among others. 

Types of Nanostructured lipid carriers (NLCs) 

 
Figure: Components of NLCs 

Application of NLCs 

The NLCs can be used in a wide variety of drug delivery systems by different routes including 

oral, transdermal, ocular, pulmonary, and IV delivery systems. Some of the pharmaceutical 

applications of NLCs are summarized in figure 

 
Figure: Application of NLCs 
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MATERIAL AND METHODS 

Materials 

1. Active Pharmaceutical Ingredient (API): Aceclofenac (obtained from a pharmaceutical-

grade supplier, purity > 99%) 

2. Solid Lipids: Glyceryl Behenate (Compritol 888 ATO) (Gattefossé, France), Tristearin 

(Sigma-Aldrich, USA) 

3. Liquid Lipids: Medium-chain triglycerides (MCTs) (Miglyol 812, Sasol, Germany) 

4. Surfactants: Polysorbate 80 (Tween 80) (Sigma-Aldrich, USA), Soy Lecithin (Lipoid S 75, 

Lipoid GmbH, Germany) 

5. Stabilizers: Polyvinyl alcohol (PVA) (Sigma-Aldrich, USA) 

6. Solvents: Dichloromethane (DCM) (Sigma-Aldrich, USA), Ethanol (Sigma-Aldrich, USA) 

7. Other Chemicals: Phosphate-buffered saline (PBS) (pH 7.4) (Sigma-Aldrich, USA) 

Table: Material used in preparation of Nanostructured lipid carriers (NLCs) 

Material Used in Preparation of NLCs 

Active Pharmaceutical Ingredient 

(API) 

Aceclofenac  

Solid Lipids Glyceryl Behenate, Tristearin  

Liquid Lipids Medium-chain triglycerides  

Surfactants  Polysorbate 80  

Stabilizers Polyvinyl alcohol 

Solvents Dichloromethane 

Other Chemicals Phosphate-buffered saline 

Table: Material Used in Preparation of NLCs 

Materials Quantities 

• Glyceryl Behenate-Based NLCs 

Glyceryl Behenate: 2 g 

MCTs: 1 g 

Aceclofenac: 500 mg 

PVA: 2 g (for 100 mL of 2% solution) 

Polysorbate 80: 1 g 

Dichloromethane: as required 

Ethanol: as required 

•  Tristearin-Based NLCs 

Tristearin: 2 g 

MCTs: 1 g 

Aceclofenac: 500 mg 

PVA: 2 g (for 100 mL of 2% solution) 

Soy Lecithin: 1 g 

Dichloromethane: as required 

Ethanol: as required 
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Methods 

Solubility Study 

Solid lipid selection was based on the solubility of drug to give a visually clear solution in lipid 

melt under normal light when seen with naked eye. The lipids used for the production of lipid 

Nanoparticle were selected such as Glyceryl behenate, Stearic acid, Cetyl palmitate, Tristearin, 

Tripalmitin, Tricaprin, Glyceryl monostearate etc. the drug and varying quantities of selected 

lipid in 15 ml of glass vials were heated above the melting point of lipid in controlled 

temperature water bath. After melting the lipid in vials the solubility of drug was observed 

visually in the melt . solubility of drug in the lipid is a determinant of the encapsulation 

efficiency of lipid nanoparticle. It is expected that high lipid solubility would result in high 

encapsulation efficiency of the final formulation. Dilip et al. found that Stearic acid having the 

highest potential to solubilize iaceclofenac as compare with the other lipid like Glceryl behenate, 

tristearin & cetyl palmitate. 

Sr. N. Solid-Lipid 

 

Solubility(mg/ml) 

1. SA- Stearic 

acid 

25.23 

2. Glyceryl 

Behenate  

30.56 

3. Tristearin  33.18 

4. Cetyl 

palmitate 

36.96 

Table: Different types of Solid-Lipids used in NLCs 

 
Figure: Solubility Study of Solid-Lipids used in NLCs 

Surfactants 

The quality and efficacy of nano lipid carriers and lipid nanoparticles are highly influenced by 

the characteristics and concentrations of surfactant. Because of their amphiphilic character, these 
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interfacial tension between the lipid and aqueous phases. The ionic surfactant sodium 
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deoxycholate, which has a low emulsification efficiency, can be used to raise the nanoparticle 

charge, which is linked to increased electrostatic repulsion and improved colloidal system 

physical stability 

Table: Different types of Surfactants used in NLCs 

Sr. 

No. 

Surfactants Solubility 

1 Tween 80 35.99 

2 Tween 20 34.76 

3 Span 80 28.27 

4 Span 20 33.22 

 
Figure: Solubility study of surfactants used in NLCs 

Partitioning Behavior:  

Partition coefficients (ratio of the amount of drug in lipid to the amount of drug in aqueous phase) 

are another tool for the selection of solid lipid. Ten milligrams (Approximately) of drug was 

dispersed in a mixture of melted lipid (1 g) and 1 ml of hot distilled waterand shaken for 30 min 

in a hot water bath. Aqueous phase was separated after cooling by ultracentrifugation and 

analyzed for drug content.  

Selection of liquid lipid  

The solubility of drug in different liquid lipids (oils), was determined by using shake flask 

method. Briefly, an excess of drug was added individually to the oils in screw capped tubes. 

Mixtures were then shaken for 24 hours in a  

water bath shaker maintained at 250C±2 0C. After 24 hour, each sample was centrifuged at 5000 

rpm for 10 minute; supernatant was diluted suitably. The amount of drug solubilized in the 

vehicles was analyzed by  HPLC or UV-VISIBLE spectrophotometer 

Solid lipid liquid lipid compatibility  
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mixture were checked after 1 hour immediately after solidification and after 24 hours, mixture 

creating one single phase only were selected 

Preparation of Nanostructured Lipid Carriers (NLCs) 

1. Preparation of Glyceryl Behenate-Based NLCs 

i. Lipid Phase Preparation: Weigh 2 g of Glyceryl Behenate. Add 1 g of MCTs. Melt the 

mixture at 70°C until completely liquefied. 

ii. Drug Incorporation: Dissolve 500 mg of Aceclofenac in the lipid phase. 

iii. Aqueous Phase Preparation: Prepare a 2% (w/v) solution of PVA by dissolving 2 g of 

PVA in 100 mL of distilled water. Heat the solution to 70°C with constant stirring until 

the PVA is fully dissolved. Add 1 g of Polysorbate 80 to the PVA solution. 

iv. Emulsification: Slowly add the hot lipid phase to the hot aqueous phase under high-speed 

homogenization at 15,000 rpm for 10 minutes using a high-shear homogenizer (Ultra-

Turrax T25, IKA, Germany). 

v. Ultrasonication: Subject the resulting coarse emulsion to ultrasonication using a probe 

sonicator (Vibra-Cell, Sonics, USA) at 60% amplitude for 5 minutes (pulse mode: 30 

seconds on, 30 seconds off). 

vi. Cooling: Allow the nanoemulsion to cool to room temperature, forming the NLCs. 

vii. Purification: Centrifuge the NLC dispersion at 15,000 rpm for 30 minutes to remove any 

unencapsulated drug and excess surfactants. Wash the pellet with distilled water and re-

suspend in an appropriate volume of distilled water. 

 
Figure: Solvent emulsification evaporation method and microemulsion method 

Organic 

Solvent+Drug+Liquid

Emulsification

Oil/Water Emulsion

Low pressure evaporation 

of organic solvent

NLCs

Drug+surfactant+co-

surfactant

Melted lipid

Emulsion

Dispersed in chilled 

water

NLCs



 

1113                  Bulletin of Pure and Applied Sciences-Zoology / Vol.43B No.1S / January-June 2024 

 

2. Preparation of Tristearin-Based NLCs 

i. Lipid Phase Preparation: Weigh 2 g of Tristearin. Add 1 g of MCTs. Melt the mixture at 

70°C until completely liquefied. 

ii. Drug Incorporation: Dissolve 500 mg of Aceclofenac in the lipid phase. 

iii. Aqueous Phase Preparation: Prepare a 2% (w/v) solution of PVA by dissolving 2 g of 

PVA in 100 mL of distilled water. Heat the solution to 70°C with constant stirring until 

the PVA is fully dissolved. Add 1 g of Soy Lecithin to the PVA solution. 

iv. Emulsification: Slowly add the hot lipid phase to the hot aqueous phase under high-speed 

homogenization at 15,000 rpm for 10 minutes using a high-shear homogenizer (Ultra-

Turrax T25, IKA, Germany). 

v. Ultrasonication: Subject the resulting coarse emulsion to ultrasonication using a probe 

sonicator (Vibra-Cell, Sonics, USA) at 60% amplitude for 5 minutes (pulse mode: 30 

seconds on, 30 seconds off). 

vi. Cooling: Allow the nanoemulsion to cool to room temperature, forming the NLCs. 

vii. Purification: Centrifuge the NLC dispersion at 15,000 rpm for 30 minutes to remove any 

unencapsulated drug and excess surfactants. Wash the pellet with distilled water and re-

suspend in an appropriate volume of distilled water. 

 
Figure: Method used in preparation of glyceryl behenate-based NLCs and tristearin-based NLCs 

Characterization of NLCs 

1. Particle Size and Zeta Potential: Measure the particle size and zeta potential of the NLCs 

using a dynamic light scattering (DLS) instrument (Zetasizer Nano ZS, Malvern 

Instruments, UK). Prepare samples by diluting 1 mL of NLC dispersion with 10 mL of 

distilled water. 

2. Encapsulation Efficiency: Determine the encapsulation efficiency by centrifuging 5 mL of 

NLC dispersion at 15,000 rpm for 30 minutes. Collect the supernatant and measure the free 

Aceclofenac content using UV-Vis spectrophotometry at 275 nm. Calculate the 

encapsulation efficiency using the formula:  
Encapsulation Efficiency (%) = (Total drug−Free drug/Total drug)×100 
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3. Morphology: Examine the morphology of the NLCs using transmission electron microscopy 

(TEM) (JEM-2100, JEOL, Japan). Prepare samples by placing a drop of NLC dispersion on 

a carbon-coated copper grid and staining with 1% phosphotungstic acid. 

In Vitro Release Studies 

1. Dialysis Method: Place 5 mL of NLC dispersion in a dialysis bag (MWCO 12,000-14,000 Da) 

and immerse it in 100 mL of PBS (pH 7.4). Maintain the system at 37°C with constant stirring 

(100 rpm). 

2. Sampling: At predetermined time intervals (0.5, 1, 2, 4, 6, 8, 12, 24, 36, and 48 hours), 

withdraw 2 mL of release medium and replace it with fresh PBS. Analyze the withdrawn 

samples for Aceclofenac content using UV-Vis spectrophotometry at 275 nm. 

3. Data Analysis: Plot the cumulative release of Aceclofenac versus time. Fit the release data to 

various kinetic models (e.g., zero-order, first-order, Higuchi, Korsmeyer-Peppas) to determine 

the release mechanism. Compare the release profiles of the two formulations using statistical 

analysis (e.g., Student’s t-test) to assess significant differences. 

4. Statistical Analysis: Perform statistical analysis using GraphPad Prism software (version 9.0). 

Express data as mean ± standard deviation (SD). Use Student’s t-test to compare particle size, 

zeta potential, encapsulation efficiency, and in vitro release profiles between the two NLC 

formulations. Consider p-values < 0.05 as statistically significant. 

RESULT AND DISCUSSION  

Particle Size and Zeta Potential 

Particle Size: The particle size of NLCs plays a crucial role in determining their stability, drug 

release profile, and cellular uptake. The particle sizes of the Glyceryl Behenate-based and 

Tristearin-based NLCs were measured using dynamic light scattering (DLS). The results are 

summarized in Table 1. 

Table : Particle sizes of the Glyceryl Behenate-based and Tristearin-based NLCs 

Formulation Particle Size (nm) ± SD PDI ± SD 

Glyceryl Behenate NLCs 150 ± 10 0.18 ± 0.02 

Tristearin NLCs 200 ± 15 0.22 ± 0.03 

Glyceryl Behenate-based NLCs had a smaller average particle size of 150 ± 10 nm compared to 

Tristearin-based NLCs, which had an average particle size of 200 ± 15 nm. The polydispersity 

index (PDI) values for both formulations were below 0.25, indicating a narrow particle size 

distribution and homogeneity of the NLC dispersions. The smaller particle size of Glyceryl 

Behenate-based NLCs can be attributed to the lower viscosity of Glyceryl Behenate, which 

facilitates more efficient emulsification and homogenization. 

 

Zeta Potential: Zeta potential is an indicator of the stability of colloidal dispersions. Higher 

absolute values of zeta potential suggest better stability due to electrostatic repulsion between 

particles. The zeta potentials of the NLC formulations are shown in Table 2. 
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Table : Zeta potentials of the NLC formulations 

Formulation Zeta Potential (mV) ± SD 

Glyceryl Behenate NLCs -25 ± 2 

Tristearin NLCs -22 ± 2 

Both formulations exhibited negative zeta potential values, indicating good stability. Glyceryl 

Behenate-based NLCs had a slightly higher absolute zeta potential (-25 ± 2 mV) compared to 

Tristearin-based NLCs (-22 ± 2 mV). This suggests that Glyceryl Behenate-based NLCs might 

be more stable due to stronger electrostatic repulsion between particles. 

 

Encapsulation Efficiency 

Encapsulation efficiency (EE) is a measure of the proportion of the drug that is successfully 

incorporated into the NLCs relative to the total amount used in the formulation. The 

encapsulation efficiencies of the two NLC formulations are provided in Table 3. 

Table : Encapsulation Efficiency of the NLC formulations 

Formulation Encapsulation Efficiency (%) ± SD 

Glyceryl Behenate NLCs 85 ± 3 

Tristearin NLCs 80 ± 4 

Glyceryl Behenate-based NLCs showed a higher encapsulation efficiency of 85 ± 3% compared 

to Tristearin-based NLCs, which had an encapsulation efficiency of 80 ± 4%. The higher 

encapsulation efficiency of Glyceryl Behenate-based NLCs could be attributed to the better 

compatibility of Aceclofenac with Glyceryl Behenate, which provides a more favorable matrix 

for drug incorporation. 

 

In Vitro Release Studies 

In vitro release studies were conducted to evaluate the release profiles of Aceclofenac from the 

NLC formulations over 48 hours. The cumulative release data are presented in Table 4. 

Table : In vitro release profile of the NLC formulations 

Time (hours) Glyceryl Behenate NLCs (%) ± SD Tristearin NLCs (%) ± SD 

0.5 5 ± 1 10 ± 2 

1 10 ± 2 20 ± 3 

2 15 ± 2 30 ± 4 

8 40 ± 4 60 ± 6 

12 50 ± 4 70 ± 7 

4 20 ± 3 40 ± 5 

6 30 ± 3 50 ± 5 
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Time (hours) Glyceryl Behenate NLCs (%) ± SD Tristearin NLCs (%) ± SD 

24 60 ± 5 80 ± 8 

36 70 ± 6 85 ± 8 

48 75 ± 6 90 ± 9 

Glyceryl Behenate-based NLCs demonstrated a more sustained release of Aceclofenac compared 

to Tristearin-based NLCs. The cumulative release of Aceclofenac from Glyceryl Behenate-based 

NLCs reached 75% at 48 hours, whereas Tristearin-based NLCs showed almost complete release 

(90%) within the same period. The slower release rate from Glyceryl Behenate-based NLCs can 

be attributed to the smaller particle size and higher encapsulation efficiency, which provide a 

more controlled and sustained release profile. 

Release Kinetics: The release data were fitted to various kinetic models to elucidate the release 

mechanism of Aceclofenac from the NLCs. The best-fit models and corresponding parameters 

are summarized in Table 5. 

Table : Release Kinetics of the NLC formulations 

Formulation Kinetic Model R² Release Exponent (n) 

Glyceryl Behenate NLCs Korsmeyer-Peppas 0.98 0.45 

Tristearin NLCs Korsmeyer-Peppas 0.95 0.60 

The Korsmeyer-Peppas model provided the best fit for both formulations, indicating that the 

release mechanism involves a combination of diffusion and erosion. The release exponent (n) for 

Glyceryl Behenate-based NLCs was 0.45, suggesting Fickian diffusion-controlled release. In 

contrast, the release exponent (n) for Tristearin-based NLCs was 0.60, indicating non-Fickian, 

anomalous transport, which involves both diffusion and swelling-controlled mechanisms. 

Statistical Analysis 

Particle Size: A Student's t-test revealed a significant difference in particle size between the two 

formulations (p < 0.05), confirming that Glyceryl Behenate-based NLCs are significantly smaller 

than Tristearin-based NLCs. 

Encapsulation Efficiency: The difference in encapsulation efficiency between the two 

formulations was also statistically significant (p < 0.05), indicating that Glyceryl Behenate is 

more efficient in encapsulating Aceclofenac compared to Tristearin. 

Cumulative Release: Statistical analysis of the cumulative release data showed significant 

differences at all measured time points (p < 0.05). This suggests that the choice of lipid 

significantly affects the release profile of Aceclofenac from NLCs. 

CONCLUSION 

In conclusion, Glyceryl Behenate-based NLCs demonstrated superior performance over 

Tristearin-based NLCs in prolonging Aceclofenac release. The smaller particle size and higher 

encapsulation efficiency of Glyceryl Behenate contributed to a more controlled and sustained 

drug release profile. This makes Glyceryl Behenate a more effective lipid matrix for enhancing 
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the therapeutic efficacy and stability of Aceclofenac, suggesting its potential for improved 

patient compliance and reduced dosing frequency in NSAID therapies. 
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