Bulletin of Pure and Applied Sciences.

Vol.36 A (Zoology), Issue (No.1) 2017:P.7-15

Print version ISSN 0970 0765

Online version ISSN 2320 3188

DOI 10.5958/2320-3188.2017.00002.X

Authors Affiliation:

Department of Zoology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan

Corresponding Author: Sharon Zulfigar

Department of Zoology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan.

E-mail:

sharonzulfiqar@hotmail.com Received on15.03.2017 Accepted on 15.06.2017 Probiotics Mitigate the Anti-Cancer Effect of Drugs: A Review

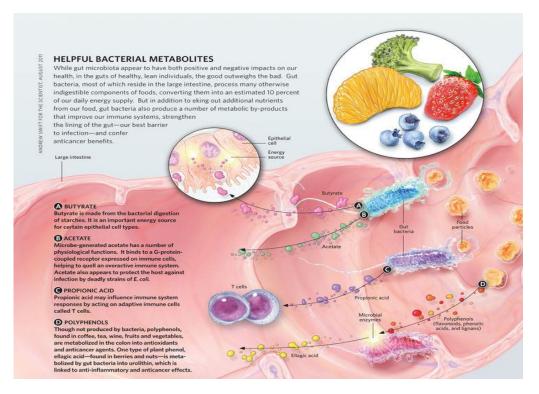
Sharon Zulfigar

Abstract

This study was conducted at Department of Zoology, University of Gujrat, Pakistan during 2016-2017. The data regarding causes, effects and treatment of various types of probiotics was obtained and compiled through a thorough review of various published research articles of international reputed journals and relevant books. As energy food probiotics have proven their efficacy in preventing several types of cancer. Probiotics effect by competing for nutrients and receptors by producing antimicrobial metabolites. Metabolites produced by probiotics are for protection against cancer, and using mutagens, diminishing marginal productivity of 30 carcinogens by mitigating xenobiotic metabolism hormone regulating apoptosis and suppressing multiplication. In addition, probiotics alter the physiology and mental health counseling the reduced risk of carcinogenesis. Therefore, probiotics would be considered safe strategy to prevent cancer.

Keywords: Probiotics, Prebiotics, Synbiotics, Carcinogenesis, Apoptosis

INTRODUCTION


The word cancer is frightening the world. The cancer patients seem to be stranded because the rate of survival is very low, if survive, recovery is very challenging. Cancer is a generic term for a large group of diseases that can affect any part of our body. It is one of the major leading causes of death worldwide and obviously has gained much attention of scientific community to develop and improve the cancer treatment with the intention to reduce the side effects of existing treatments and also makes expensive drugs affordable to common man [1, 2]. The primary goal of scientific community involved in cancer research is to kill the disease or if not at least continue efforts need to be made considerably to prolong the life of patients by improving the quality of life. Although many drugs are used to treat cancer, tolerance to their burden is really a challenging task. As it is good that the prevention is better than cure

Sharon Zulfigar / Probiotics Mitigate the Anti-Cancer Effect of Drugs: A Review

so an alternative to drugs in preventing cancer is the use of natural foods that confer the anticarcinogenic effects.

In recent years the intervention to prevent cancer has received an incredible attention from clinical nutritionist, scientists and industrialists. The World Health Organization defined probiotics as live microorganisms which when administrated in adequate amounts confer a health benefit on the host [3].

Marcel Roberfroidwho identified and named prebiotics first in 1995 defined that prebiotic is a selectively fermented ingredient that allows specific changes both in the composition and activity in the gastrointestinal micro-flora that controls benefits upon host well-being and health [4]. Probiotics provide health benefits by enhancing digestion and absorption of nutrients, modulating immune responses, balancing the population of beneficial bacteria, excluding pathogens and producing essential vitamins and amino acids [5]. The mechanism of probiotic action primarily includes alteration in the composition of gut micro-biota, maintaining epithelial barriers function, competition with nutrients and adhesion to the epithelium of the gastrointestinal tract. Probiotics enhance the host immunity to pathogens by producing antibacterial substances that result in the suppression of specific pathogens [6, 7]. There are certain species of intestinal micro-biota particularly lactic acid bacteria which exhibits anti-carcinogenic action, anti-inflammatory effects also takes part in alleviating the symptoms of lactose intolerance [8, 9]. Lactic acid bacteria also exhibit anti-cholesterol activities and decrease cholesterol levels by producing lipase and by assimilating fat in the body [10].

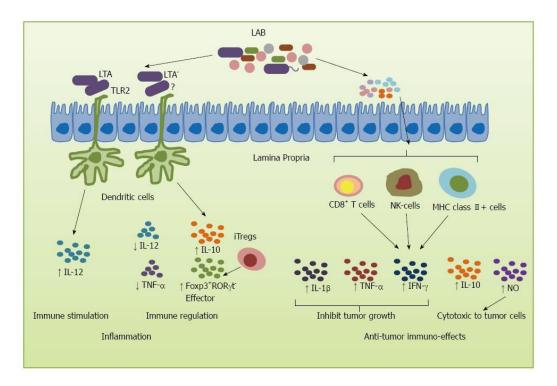
Figure 1: The helpful bacterial metabolites are shown. These include Butyrate, Acetate, Propionic acid and Polyphenols. These bacterial metabolites improve immune system, strengthen the lining of gut, act as best barrier to infection and confer anti-cancer benefits.

DIFFERENT STRATEGIES BY WHICH PROBIOTICS CONFER PROTECTION AGAINST CARCINOGENESIS

Exclusion of Pathogenic Microorganisms

Severe microbial infections are known to associate with the development of cancer and it has been reported that 17.8% of the global cancer burden is due to infection. However in the developing countries the rate of infection associated with cancer is 26.3% while in the developed countries the rate has been reduced to 7.7% [11]. 15.6% of the worldwide cancer was caused by the infection with bacterium Helicobacter pylori and viruses such as hepatitis B, hepatitis C, human papillomavirus, human lympho-tropic virus 1 (HLTV1), Epstein Barr virus and HIV virus [12, 13]. Epstein Barr virus has proven to cause Burkitt's lymphoma, nasopharyngeal carcinoma and many other types of lymphomas [14] while HTLV1 causes adult T-cell leukemia [15]. Whereas human papilloma virus causes bladder carcinoma [16] and parasites like liver fluke causes cancer of liver [17]. Probiotics are known to eliminate pathogens in the gut by inhibiting and displacing their adhesion by competing for the receptors on epithelial cells nutrients producing antimicrobial metabolites and strengthening the intestinal barrier. Probiotics inhibit the expression of genes for virulence and proteins by interpreting the signal transduction pathway of pathogens [18, 19]. So prebiotics serve as an effective tool in eliminating pathogens and protecting the host from pathogenic carcinogenesis.

Anti-Mutagenic Property of Probiotics


Development of cancer is a multi-stage process that would initiate when mutations start to accumulate in the tumor suppressor and promoted oncogenes [20]. The intestinal microorganisms produce geno-toxic compounds that contribute to the increased risk of carcinogenesis. Some of the beneficial intestinal bacteria mitigate the formation of mutagens and their effects. Balanced diet helps in the establishment of good micro-biota which is beneficial to the host while imbalanced food that is high protein and fat content with low fibermay increase the occurrence of harmful microorganisms in the intestine [21].

Xenobiotic Enzymes

Xenobiotic enzymes also take part in the development of carcinogenesis. The enzymes responsible for the xenobiotic metabolism are generally referred as xenobiotic metabolic enzymes or xenobiotic enzyme. Xenobiotic metabolizing enzymes increase the geno-toxicity and carcinogenicity in the colon [22]. There are various species of probiotics which inhibit or mitigate activity on xenobiotic enzymes. For example, probiotic bacteria such as Lactobacillus acidophilus hindered the conversion of exogenously administered aromatic nitro-azo and amine glucuronide compounds to free amines [23]. So bacterial xenobiotic enzyme activity is strain specific and probiotic strains which are proven effective can be used to prevent xenobiotic metabolism induced carcinogenesis.

Production of Protective Metabolites

Probiotics produce a wide range of metabolites that confer health benefits to the host. The metabolites of probiotic bacteria such asarginine, glutamine, Short Chain Fatty Acids (SCFAs), bacteriocins and hydrogen peroxide are protective to the intestine [24]. Fermented metabolites are capable of inducing apoptosis, a mechanism of programmed cell death which is considered to be a promising strategy in controlling tumor genesis [25]. Butyrate nourishes the colonic mucosa and meantime it has also been proven to promote the apoptosis of transformed colonocytes. In addition, it has also been reported to inhibit histone deacetylase enzyme which together with histone acetyltransferases determine the acetylation status of histones and also affect the regulation of gene expression [26, 27]. By altering the transcription of small number of genes responsible for cell differentiation, arrest of cell growth and apoptosis in tumor cells, butyrate has proven its efficiency in the prevention and management of cancer.

Figure 2: This figure shows the production of protective metabolites from Lactic Acid Bacteria (LAB). These metabolites trigger immune response and also exhibit anti-tumor immune-effects.

Anti-Proliferative Activity and Regulation of Apoptosis

Apoptosis is a process of programmed cell death that occurs in physiological and pathological conditions. It depletes the cancer cells and constitutes a target for anti-cancer chemotherapy. Both morphological as well as physiological changes can be observed during apoptosis. Morphological changes in nucleus mainly involve the chromatin condensation, nuclear fragmentation while cytoplasmic changes involves rounding up of the cell, pyknosis and retraction of pseudopods. The physiological changes involve activation of caspases, breakdown of DNA, and proteins, changes in the membrane and recognition of phagocytic cells [28, 29]. L. ruteri regulates cell proliferation by facilitating apoptosis of activated immune cells via inhibition of IkappaBalphaubiquitination and enhancing pro apoptotic MAPK signaling [30]. It has also been reported that probiotic isolates, L. rhamnosusandBifidobacteriumlactis induce apoptosis through mitochondrial pathway in Caco-2 cells [31]. In addition, cell bound exo-polysachcharide (cb-EPS) has also been shown to inhibit colon cancer cell line by directly affecting cell morphology [32]. The soluble polysaccharide from L. acidophilus also shows anti-cancer activity by inducing apoptosis in the HT cell line [33].

Probiotics for Altered Food Preference and Mental Health

Both human and micro-biota in the gut are mutually regulated by each other. This can be related and described as follows: the human behavior, mainly the food habit i.e. the kind of food ingested, frequency and quantity greatly determines the gut microbial composition and diversity of an individual. On the other hand, it has been well studied that gut micro-biota influence the host physiology to a greater extent, therefore, the kind of microbial diversity in the gut determines the health of an individual [34]. The fat and protein rich diet is mainly associated with the increased risk of carcinogenesis; to overcome this one has to adapt to change the food habit, preferring a balanced diet not containing high fat and protein which upon overcooking release dietary amines and other genotoxins. Further, the infusion of intestinal long chain fatty acids such as linolenic and linoleic acids modulated food preference

as well as total calorie intake via the vagal nerve and midbrain hypothalamic neural pathways [35]. In addition, the pharma-biotics such as gamma amino butyric acid (GABA), acetylcholine, serotonin, catechol-amines etc., produced by probiotics and other commensal gut micro-biota modulate neural signaling with enteric nervous system when they release into intestinal lumen [36, 37].

NEW FRONTIERS IN PROBIOTIC RESEARCH

Defined as 'live microbial feed supplements which beneficially affect the host by improving the intestinal microbial balance' [38]; probiotic bacteria represent aneffective alternative to traditional prophylactic andtherapeutic regimes in a variety of clinical settings. Certain probiotics for example have been shown to be effective in the treatment [39] and prevention [40] of rotavirus-associateddiarrhea, and also significantly reduce the incidence of antibioticassociated diarrhea when co-administered with antibiotics [41]. Probioticshas also been implicated in the prevention and decreased recurrence of certain cancers, reducing the risk of colon cancer by inhibiting certain carcinogens, such as nitrosamines or producing antimutagenic com-pounds. The robotic strain Lactobacillus salivariusUCC118 e.g. has been shown to reduce the prevalence of colon cancer in interleukin-10 (IL-10) knockout mice [42]. Breast-fed infants exhibit higher bifido-bacteriacounts, which are associated with lower incidence of allergies compared with formula-fed infants [43]. In addition, Lactobacillus GG has been shown to significantly reduce the incidence of eczema in the first 2 years of life in high-risk infants, when administered to he mother for 2 weeks prenatally and to the infants for 6months post-natally. The frequency of eczema in the pro-biotic-fed group was half that of the placebo-control group [44].

Improving Probiotic Delivery – Patho-Biotechnology

Current methods to improve probiotic survival involve the induction of a stress-tolerance response achieved bypre-exposing cells to sub-lethal stresses, such as salt, heat, bile and low pH [44]. Such pre-exposure can significantly increaseprobiotic survival following subsequent exposure tolethal stress. Schmidt and Zink showed that pre-exposing Bifido-bacterium adolescentis to 47C for 15 minprior to a lethal heat shock increased the strain's heattolerance 128-fold [45]. Such treatments however might alsoresult in significant decreases in cell yield, in addition tocellular activity and process volumetric productivity [46]. An alternative approach to improving probiotic efficacy is to enhance a strain's ability to cope with stress at the genetic level.

Improving Probiotic Specificity - 'Designer Probiotics'

The most significant applications of designer probiotics to date include the treatment of HIV (AIDS) and enteric infections.

HIV (AIDS)

Approximately 14 000 people contract HIV every day[47]. One such strategy, presented by Rao, involves the use of a live microbe-cide [48]. They constructed a genetically engineered probiotic E. coli strain that secretes an anti-HIV peptide derived from the C-terminal heptad repeat (HR-2) region of the trans-membrane subunit of the HIV-1 envelope glycoprotein (Env), and functions by blocking HIV entry to the host cells. When administered orally or as a rectal suppository, this 'live microbe-cide' colonizes the gut mucosa and secretes thepeptide in situ, thereby providing protection in advance of HIV exposure for up to a month (Laurel and Berger 2005). Using a similar approach, Chang engineeredthe commensal bacterium L. casei to secrete two-domainCD4 proteins [49]. In this approach, the proteins bind HIVtype-1 gp20 and inhibit entry into host target cells.

Enteric Infections

Many of the pathogens responsible for the major enteric infections exploit oligosaccharides on the surface of host cells as receptors for toxins and / or adhesins, enabling colonization of the mucosa and entry of the pathogen orsecreted toxins into the host cell. Blocking this

Sharon Zulfigar / Probiotics Mitigate the Anti-Cancer Effect of Drugs: A Review

adherenceprevents infection, while toxin neutralization ameliorates (improves) the symptoms until the pathogen is eventually overcome bythe immune system. When administered orally, these probiotics bind to and neutralize toxins in the gut lumenand interfere with pathogen adherence to the. One such construct consists of an E. colistrain expressing a chimeric lipopolysaccharide (LPS) terminating in a shiga toxin (Stx) receptor. One milligramdry weight of this recombinant strain has been shown to neutralize>100 lg of Stx1 and Stx2 [51]. Paton have also constructed probioticswith receptor-blocking potential against EnterotoxigenicE. coli (ETEC) toxin LT and cholera toxin (Ctx) [52, 53].

FUNCTION OF PROBIOTICS AS EFFECTIVE PROPHYLACTIC AGENTS

In addition to a therapeutic role, certain probioticshave also been shown to function as effective prophylacticagents, being specifically engineered to function as novel vaccine delivery vehicles. Stimulating both innate and acquired immunity, these strains lack the possibility of reversion to virulence, which exists with the more conventional pathogenic platforms currently in development. Guimara esrecently described the construction of a L. lactis strain expressing inIA, encoding inter-nalin A, a surface protein related to invasion inL. Mono-cytogenes [54]. In this instance, the otherwise non-invasive L. lactis strain is now capable of invading the smallintestine and delivering molecules (DNA or protein) intomammalian epithelial cells, making it a safer and moreattractive alternative to attenuated L. mono-cytogenes as anantigen-delivery vehicle. Probiotic vaccine carriers administered by the mucosal route mimic the immune responseelicited by natural infection and can lead to longlastingprotective mucosal and systemic responses [55]. Mucosal vaccine delivery (thoseadministered orally, anally or by nasal spray) also offerssignificant technological and commercial advantages overtraditional formulations, including reduced pain and thepossibility of cross-contamination associated with intra-muscular injection and the lack of a requirement formedically trained personnel to administer the vaccine.

CONCLUSION

Probiotics and prebiotics selectively modulate the gut micro-biota, eliminating pathogens, reducing mutagenicity and geno-toxicity of dietary carcinogens, suppressing xenobiotic enzyme activity, preventing the release and reabsorption of pro-carcinogenic substances, producing metabolites with anticancer properties, regulating apoptosis, and modulating immunity, confer protection against carcinogenesis to the host. In addition, a healthy balanced diet can aid in reducing the risk of carcinogenesis. Accordingly, probiotics have also proven to alter the food preference and help an individual to adopt healthy food, thereby conferring protection. With the potential to alleviate the symptoms of chronic gastrointestinal disorders to fightinfection and modulate the immune system probiotics are finally beginning to represent a viable alternative to traditional drug-based therapies [56].

FUTURE PROSPECTS

Recent developments in synthetic and systems biology, based on the rapidly advancing 'omics' technologies, has and will continue to lead to the emergence of an ever-increasing number of novel genetic loci withdefined additional functions. This coupled with computer-aided bioinformatics and novel tools for genetic modification will ultimately lead to the development of artificialmicro-organisms [57] and eventually to a new class of probiotics assembled from the components of various origins and tailored to fulfil all the requirements of an ideal therapeutic agent.

REFERENCES

- 1. Jemal A., et al. (2011). "Global cancer statistics". A Cancer Journal for Clinicians 61.2: 69-90.
- 2. Siddiqui M., et al. (2012). "The High Cost of Cancer Drugs and What We Can Do About It". Mayo Clinic Proceedings 87.10: 935-943.
- 3. "Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria". World Health Organization /Food and Agriculture Organization (2001).
- 4. Gibson GR., et al. (1995). "Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics". Journal of Nutrition 125.6: 1401–1412.
- 5. Siciliano RA., et al. (2012). "Molecular mechanisms of probiotic action: a proteomic perspective". Current Opinion in Microbiology 15.3: 390-396.
- 6. Bielecka M., et al. (1998). "Interaction of Bifidobacterium and Salmonella during associated growth. Resistance of Bifidobacterium to gastrointestinal conditions". International Journal of Food Microbiology 45: 151-155.
- 7. Gill HS. et al. (1998). "Stimulation of the immune system by lactic cultures". International Dairy Journal 8.5-6: 535-544.
- 8. Fooks LJ. et al. (1999). "Prebiotics, probiotics and human gut". International Journal of Dairy Science 9.1: 53-61.
- 9. Asha et al. (2012). "Synergistic impact of Lactobacillus fermentum, Lactobacillus plantarum and vincristine on 1, 2-dimethylhydrazineinduced colorectal carcinogenesis in mice". Experimental and Therapeutic Medicine 3.6: 1049-1054.
- 10. Rashmi BS, et al. (2014). "Partial Purification, Characterization of Lactobacillus sp G5 Lipase and their Probiotic Potential". International Food Research Journal 21.5: 1737-1743.
- 11. Parkin DM. et al. (2006). "The global health burden of infection-associated cancers in the year 2002". International Journal of Cancer 118.12: 3030-3044.
- 12. Pisani P., et al. (1997). "Cancer and infection: estimates of the attributable fraction in 1990". Cancer Epidemiology, Biomarkers & Prevention 6.6: 387-400.
- 13. Thompson MP. et al. (2004). "Epstein-BarrVirus and Cancer". Clinical Cancer Research 10.3: 803-821.
- 14. Gonçalves DU., et al. (2010). "Epidemiology, Treatment, and Prevention of Human T-Cell Leukemia Virus Type 1-Associated Diseases". Clinical Microbiology Reviews 23.3: 577-589.
- 15. Cooper K., et al. (1997). "Human papillomavirus and schistosomiasis associated bladder cancer". Molecular Pathology 50.3: 145-148.
- 16. Sripa B., et al. (2007). "Liver Fluke Induces Cholangiocarcinoma". PLOS Medicine 4.7: e201.
- 17. Petrova MI., et al. (2013). "Vaginal microbiota and its role in HIV transmission and infection". FEMS Microbiology Reviews 37.5: 762-792.
- 18. Corr SC., et al. (2009). "Understanding the mechanisms by which probiotics inhibit gastrointestinal pathogens". Advances in Food and Nutrition Research 56: 1-15.
- 19. Ferguson LR. et al. (2009). "Role of dietary mutagens in cancer and atherosclerosis". Current Opinion in Clinical Nutrition & Metabolic Care 12.4: 343-349.
- 20. Loeb KR., et al. (2000). "Significance of multiple mutations in cancer". Carcinogenesis 21.3: 379-385.
- 21. TassellVRL., et al. (1990). "Metabolism of dietary genotoxins by the human colonic microflora; the fecapentaenes and heterocyclic amines". Mutation Research 238.3: 209-221
- 22. Rowland IR. (1995). "Toxicology of the colon role of the intestinal microflora". In Macfarlane, G. T. and Gibson, G. (Eds). Human Colonic Bacteria, Role in Nutrition, Physiology and Pathology, CRC Press Boca Raton: 155-174.
- 23. Marteau P., et al. (1990). "Effect of chronic ingestion of a fermented dairy product containing Lactobacillus acidophilus and Bifidobacteriumbifidum on metabolic activities of the colonic flora in humans". American Journal of Clinical Nutrition 52: 685-688.

Sharon Zulfiqar / Probiotics Mitigate the Anti-Cancer Effect of Drugs: A Review

- 24. Cousin FJ., et al. (2012). "Milk fermented by Propionibacteriumfreudenreichii induces apoptosis of HGT-1 human gastric cancer cells". PLoS One 7.3: e31892.
- 25. Marks P., et al. (2001). "Histone deacetylases and cancer: causes and therapies". Nature Reviews Cancer 1.3: 194-202.
- 26. Wong JM., et al. (2006). "Colonic health: fermentation and short chain fatty acids". Journal of Clinical Gastroenterology 40.3: 23
- 27. Matthews GM., et al. (2007). "Short-chain fatty acid modulation of apoptosis in the Kato III human gastric carcinoma cell line". Cancer Biology & Therapy 6.7: 1051-1057.
- 28. Jan G., et al. (2002). "Propionibacteria induce apoptosis of colorectal carcinoma cells via short-chain fatty acids acting on mitochondria". Cell Death & Differentiation 9.2: 179-188.
- 29. Nadathur SR., et al. (1995). "Antimutagenicity of an acetone extract of yogurt". Mutation Research 334(2): 213-224.
- 30. Altonsy MO., et al. (2010). "Differential induction of apoptosis in human colonic carcinoma cells (Caco-2) by Atopobium, and commensal, probiotic and enteropathogenic bacteria: mediation by the mitochondrial pathway". International Journal of Food Microbiology 137. (2-3): 190-203.
- 31. Kim Y., et al. (2010). "Cell-bound exopolysaccharide from probiotic bacteria induces autophagic cell death of tumour cells". Letters in Applied Microbiology 51.2: 123-130.
- 32. Choi SS., et al. (2006). "Effects of Lactobacillus strains on cancer cell proliferation and oxidative stress in vitro". Letters in Applied Microbiology 42.5: 452-8.
- 33. Liu CT., et al. (2011). "Antiproliferative and anticytotoxic effects of cell fractions and exopolysaccharides from Lactobacillus casei 01". Mutation Research 721.2: 157-62.
- 34. Norris V., et al. (2013). "Hypothesis: Bacteria Control Host Appetites". Journal of Bacteriology 195.3: 411-416.
- 35. Wall R., et al. (2014). "Bacterial neuroactive compounds produced by psychobiotics". Advances in Experimental Medicine and Biology 817: 221-239.
- 36. Patterson E., et al. (2014). "Gut microbiota, the pharmabiotics they produce and host health". Proceedings of the Nutrition Society 73.4: 477-489.
- 37. Borovikova LV., et al. (2000). "Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin". Nature 405.6785: 458-462.
- 38. Fuller, R. (1989). Probiotics in man and animals. J ApplBacteriol 66, 365–378.
- 39. Guandalini, S., Pensabene, L., Zikri, M.A., Dias, J.A., Casali, L.G., Hoekstra, H., Kolacek, S., Massar, K. et al. (2000). Lactobacillus GG administered in oral rehydration solution to children with acute diarrhoea: a multicenter European trial. J PediatrGastroenterolNutr 30, 54–60.
- 40. Szajewska, H., Kotowska, M., Mrukowicz, J.Z., Armanska, M. and Kikolajczyk, W. (2001). Efficacy of Lactobacillus GG in prevention of nosocomial diarrhoea in infants. J Pediatr 138, 361–365.
- 41. D'Souza, A.L., Rajkumar, C., Cooke, J. and Bulpitt, C.J. (2002). Probiotics in prevention of antibiotic associated diarrhoea: meta-analysis. BMJ 324, 1361–1366.
- 42. O'Mahony, L., Feeney, M., O'Halloran, S., Murphy, L., Kiely, B., Fitzgibbon, J., Lee, G., O'Sullivan, G. et al. (2001). Pro- biotic impact on microbial flora, inflammation and tumour development in IL-10 knockout mice. Aliment PharmacolTher 15, 1219–1225.
- 43. Gill, H.S. and Guarner, F. (2004). Probiotics and human health: a clinical perspective. Postgrad Med J 80, 516–526.
- 44. Kalliomaki, M., Salminen, S., Arvilommi, H., Kero, P., Koski- nen, P. and Isolauri, E. (2001). Probiotics in primary pre- vention of atopic disease: a randomised placebocontrolled trial. Lancet 357, 1076–1079.
- 45. Schmidt, G. and Zink, R. (2000). Basic features of the stress response in three species of bifidobacteria: B. longum, B. adolescentis, and B. breve. Int J Food Microbiol 55, 41–45.
- 46. Doleyres, Y. and Lacroix, C. (2005). Technologies with free and immobilised cells for probiotic bifidobacteria production and protection. Int Dairy J 15, 973–988.
- 47. Shattock, R.J. and Moore, J.P. (2003). Inhibiting sexual transmission of HIV-1 infection. Nat Rev Microbiol 1, 25–34.

- 48. Rao, S., Hu, S., McHugh, L., Lueders, K., Henry, K., Zhao, Q., Fekete, R.A., Kar, S. et al. (2005). Toward a live microbial microbicide for HIV: commensal bacteria secreting an HIV fusion inhibitor peptide. ProcNatlAcadSci USA 102, 11993–11998.
- 49. Chang, T.L.-Y., Chang, C.H., Simpson, D.A., Xu, Q., Martin, P.K., Lagenaur, L.A., Schoolnik, G.K., Ho, D.D. et al. (2003). Inhibition of HIV infectivity by a natural human isolate of Lactobacillus jensenii engineered to express functional two-domain CD4. ProcNatlAcadSci USA 100, 11672–11677.
- 50. Paton, A.W., Morona, R. and Paton, J.C. (2000). A new biological agent for treatment of Shiga toxigenic Escherichia coli infections and dysentery in humans. Nat Med 6, 265–270.
- 51. Paton, A.W., Morona, R. and Paton, J.C. (2001). Neutralization of shiga toxins Stx1, Stx2c and Stx2e by recombinant bacteria expressing mimics of globotriose and globotetraose. Infect Immun 69, 1967–1970.
- 52. Paton, A.W., Jennings, M.P., Morona, R., Wang, H., Focareta, A., Roddam, L.F. and Paton, J.C. (2005). Recombinant probiotics for treatment and prevention of enterotoxigenic Escherichia coli diarrhea. Gastroenterology 128, 1219–1228.
- 53. Guimara es, V.D., Gabriel, J.E., Lefe vre, F., Cabanes, D., Gruss, A., Cossart, P., Azevedo, V. and Langella, P. (2005). Inter-nalin-expressing Lactococcuslactis is able to invade small intestine of guinea pigs and deliver DNA into mammalian epithelial cells. Microbes Infect 7, 836–844.
- 54. Holmgren, J. and Czerkinsky, C. (2005). Mucosal immunity and vaccines. Nat Med 11, S45–53.
- 55. Sleator, R.D. and Hill, C. (2007b). Patho-biotechnology; using bad bugs to make good bugs better. SciProg 90, 1–14.
- 56. Smith, H.O., Hutchison, C.A. III, Pfannkoch, C. and Venter, J.C. (2003). Generating a synthetic genome by whole genome assembly: uX174 bacteriophage from synthetic oligonucleotides. ProcNatlAcadSci USA 100, 15440–15445.
- 57. Lartigue, C., Glass, J.I., Alperovich, N., Pieper, R., Parmar, P.P., Hutchison, C.A. III, Smith, H.O. and Venter, J.C. (2007). Genome transplantation in bacteria: changing one species to another. Science 317, 632–638.